首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aquaporins (AQPs) function to selectively control the flow of water and other small molecules through biological membranes, playing crucial roles in various biological processes. However, little information is available on the AQP gene family in bananas. In this study, we identified 47 banana AQP genes based on the banana genome sequence. Evolutionary analysis of AQPs from banana, Arabidopsis, poplar, and rice indicated that banana AQPs (MaAQPs) were clustered into four subfamilies. Conserved motif analysis showed that all banana AQPs contained the typical AQP-like or major intrinsic protein (MIP) domain. Gene structure analysis suggested the majority of MaAQPs had two to four introns with a highly specific number and length for each subfamily. Expression analysis of MaAQP genes during fruit development and postharvest ripening showed that some MaAQP genes exhibited high expression levels during these stages, indicating the involvement of MaAQP genes in banana fruit development and ripening. Additionally, some MaAQP genes showed strong induction after stress treatment and therefore, may represent potential candidates for improving banana resistance to abiotic stress. Taken together, this study identified some excellent tissue-specific, fruit development- and ripening-dependent, and abiotic stress-responsive candidate MaAQP genes, which could lay a solid foundation for genetic improvement of banana cultivars.  相似文献   

2.
3.
Tomato is an important vegetable crop. In the process of tomato production, it will encounter abiotic stress, such as low temperature, drought, and high salt, and biotic stress, such as pathogen infection, which will seriously affect the yield of tomato. Calcium-dependent protein kinase (CDPK) is a class of major calcium signal receptor which has an important regulatory effect on the perception and decoding of calcium signals. CDPK plays a key role in many aspects of plant growth, such as the elongation of pollen tubes, plant growth, and response to biotic and abiotic stress. While some studies have concentrated on Arabidopsis and pepper, Solanum habrochaites is a wild species relative of cultivated tomato and there is no report on CDPK in Solanum habrochaites to date. Using tomato genomic data, this study identified 33 members of the CDPK gene family. Evolutionary analysis divides family members into four Asian groups, of which the CDPK family members have 11 gene replication pairs. Subcellular location analysis showed that most proteins were predicted to be located in the cytoplasm, and less protein existed on the cell membrane. Not all CDPK family members have a transmembrane domain. Cis regulatory elements relating to light, hormones, and drought stress are overrepresented in the promoter region of the CDPK genes in Solanum habrochaites. The expression levels of each gene under biotic stress and abiotic stress were quantified by qRT-PCR. The results showed that members of the CDPK family in Solanum habrochaites respond to different biotic and abiotic stresses. Among them, the expression of ShCDPK6 and ShCDPK26 genes change significantly. ShCDPK6 and ShCDPK26 genes were silenced using VIGS (virus-induced gene silencing), and the silenced plants illustrated reduced stress resistance to Botrytis cinerea, cold, and drought stress. The results of this study will provide a basis for the in-depth study of the CDPK gene family in Solanum habrochaites, laying the foundation for further analysis of the function of the gene family.  相似文献   

4.
5.
6.
7.
The LOR (LURP-one related) family genes encode proteins containing a conserved LOR domain. Several members of the LOR family genes are required for defense against Hyaloperonospora parasitica (Hpa) in Arabidopsis. However, there are few reports of LOR genes in response to abiotic stresses in plants. In this study, a genome-wide survey and expression levels in response to abiotic stresses of 36 LOR genes from Glycine max were conducted. The results indicated that the GmLOR gene family was divided into eight subgroups, distributed on 14 chromosomes. A majority of members contained three extremely conservative motifs. There were four pairs of tandem duplicated GmLORs and nineteen pairs of segmental duplicated genes identified, which led to the expansion of the number of GmLOR genes. The expansion patterns of the GmLOR family were mainly segmental duplication. A heatmap of soybean LOR family genes showed that 36 GmLOR genes exhibited various expression patterns in different tissues. The cis-acting elements in promoter regions of GmLORs include abiotic stress-responsive elements, such as dehydration-responsive elements and drought-inducible elements. Real-time quantitative PCR was used to detect the expression level of GmLOR genes, and most of them were expressed in the leaf or root except that GmLOR6 was induced by osmotic and salt stresses. Moreover, GmLOR4/10/14/19 were significantly upregulated after PEG and salt treatments, indicating important roles in the improvement of plant tolerance to abiotic stress. Overall, our study provides a foundation for future investigations of GmLOR gene functions in soybean.  相似文献   

8.
9.
Tonoplast intrinsic proteins (TIPs), a sub-family of aquaporins (AQPs), are known to play important roles in plant abiotic stress responses. However, evidence for the promoters of TIPs involvement in abiotic stress processes remains scarce. In this study, the promoter of the vegetable soybean GmTIP1;6 gene, which had the highest similarity to TIP1-type AQPs from other plants, was cloned. Expression pattern analyses indicated that the GmTIP1;6 gene was dramatically induced by drought, salt, abscisic acid (ABA), and methyl jasmonate (MeJA) stimuli. Promoter analyses revealed that the GmTIP1;6 promoter contained drought, ABA, and MeJA cis-acting elements. Histochemical staining of the GmTIP1;6 promoter in transgenic Arabidopsis corroborated that it was strongly expressed in the vascular bundles of leaves, stems, and roots. Beta-glucuronidase (GUS) activity assays showed that the activities of the GmTIP1;6 promoter were enhanced by different concentrations of polyethylene glycol 6000 (PEG 6000), NaCl, ABA, and MEJA treatments. Integrating these results revealed that the GmTIP1;6 promoter could be applied for improving the tolerance to abiotic stresses of the transgenic plants by promoting the expression of vegetable soybean AQPs.  相似文献   

10.
In the last two decades, global environmental change has increased abiotic stress on plants and severely affected crops. For example, drought stress is a serious abiotic stress that rapidly and substantially alters the morphological, physiological, and molecular responses of plants. In Arabidopsis, several drought-responsive genes have been identified; however, the underlying molecular mechanism of drought tolerance in plants remains largely unclear. Here, we report that the “domain of unknown function” novel gene DUF569 (AT1G69890) positively regulates drought stress in Arabidopsis. The Arabidopsis loss-of-function mutant atduf569 showed significant sensitivity to drought stress, i.e., severe wilting at the rosette-leaf stage after water was withheld for 3 days. Importantly, the mutant plant did not recover after rewatering, unlike wild-type (WT) plants. In addition, atduf569 plants showed significantly lower abscisic acid accumulation under optimal and drought-stress conditions, as well as significantly higher electrolyte leakage when compared with WT Col-0 plants. Spectrophotometric analyses also indicated a significantly lower accumulation of polyphenols, flavonoids, carotenoids, and chlorophylls in atduf569 mutant plants. Overall, our results suggest that novel DUF569 is a positive regulator of the response to drought in Arabidopsis.  相似文献   

11.
12.
13.
14.
Hyperosmolality-gated calcium-permeable channels (OSCA) are characterized as an osmosensor in plants; they are able to recognize and respond to exogenous and endogenous osmotic changes, and play a vital role in plant growth and adaptability to environmental stress. To explore the potential biological functions of OSCAs in maize, we performed a bioinformatics and expression analysis of the ZmOSCA gene family. Using bioinformatics methods, we identified twelve OSCA genes from the genome database of maize. According to their sequence composition and phylogenetic relationship, the maize OSCA family was classified into four groups (Ⅰ, Ⅱ, Ⅲ, and Ⅳ). Multiple sequence alignment analysis revealed a conserved DUF221 domain in these members. We modeled the calcium binding sites of four OSCA families using the autodocking technique. The expression profiles of ZmOSCA genes were analyzed in different tissues and under diverse abiotic stresses such as drought, salt, high temperature, and chilling using quantitative real-time PCR (qRT-PCR). We found that the expression of twelve ZmOSCA genes is variant in different tissues of maize. Furthermore, abiotic stresses such as drought, salt, high temperature, and chilling differentially induced the expression of twelve ZmOSCA genes. We chose ZmOSCA2.2 and ZmOSCA2.3, which responded most strongly to temperature stress, for prediction of protein interactions. We modeled the calcium binding sites of four OSCA families using autodocking tools, obtaining a number of new results. These results are helpful in understanding the function of the plant OSCA gene family for study of the molecular mechanism of plant osmotic stress and response, as well as exploration of the interaction between osmotic stress, high-temperature stress, and low-temperature stress signal transduction mechanisms. As such, they can provide a theoretical basis for crop breeding.  相似文献   

15.
Glutathione peroxidases (GPX) catalyze the reduction of H2O2 or organic hydroperoxides to water or corresponding alcohols using reduced glutathione, which plays an essential role in ROS (reactive oxygen species) homeostasis and stress signaling. Thellungiella salsuginea (Eutrema salsugineum), a relative of Arabidopsis thaliana, displays an extremely high level of tolerance to salt, drought, cold and oxidative stresses. The enzymatic antioxidant systems may contribute to the stress tolerance of T. salsuginea. In the present study, we aimed at understanding the roles of the antioxidant enzymes in T. salsuginea by focusing on the GPX family. We identified the eight GPX genes in T. salsuginea, and the structure of the N-terminal domains indicated their putative chloroplastic, mitochondrial and cytoplasmic location. The exon-intron organization of these genes exhibited a conserved pattern among plant GPX genes. Multiple environmental stresses and hormone response related cis-acting elements were predicted in the promoters of TsGPX genes. The gene and protein expression profiles of TsGPXs in response to high level of salinity and osmotic stresses, in leaves and roots of T. salsuginea were investigated using real-time RT-PCR and western blotting analysis. Our result showed that different members of the GPX gene family were coordinately regulated under specific environmental stress conditions, and supported the important roles of TsGPXs in salt and drought stress response in T. salsuginea.  相似文献   

16.
Metacaspases, a class of cysteine-dependent proteases like caspases in animals, are important regulators of programmed cell death (PCD) during development and stress responses in plants. The present study was focused on comprehensive analyses of expression patterns of the rice metacaspase (OsMC) genes in response to abiotic and biotic stresses and stress-related hormones. Results indicate that members of the OsMC family displayed differential expression patterns in response to abiotic (e.g., drought, salt, cold, and heat) and biotic (e.g., infection by Magnaporthe oryzae, Xanthomonas oryzae pv. oryzae and Rhizoctonia solani) stresses and stress-related hormones such as abscisic acid, salicylic acid, jasmonic acid, and 1-amino cyclopropane-1-carboxylic acid (a precursor of ethylene), although the responsiveness to these stresses or hormones varies to some extent. Subcellular localization analyses revealed that OsMC1 was solely localized and OsMC2 was mainly localized in the nucleus. Whereas OsMC3, OsMC4, and OsMC7 were evenly distributed in the cells, OsMC5, OsMC6, and OsMC8 were localized in cytoplasm. OsMC1 interacted with OsLSD1 and OsLSD3 while OsMC3 only interacted with OsLSD1 and that the zinc finger domain in OsMC1 is responsible for the interaction activity. The systematic expression and biochemical analyses of the OsMC family provide valuable information for further functional studies on the biological roles of OsMCs in PCD that is related to abiotic and biotic stress responses.  相似文献   

17.
18.
The peptidase M24 (Metallopeptidase 24, M24) superfamily is essential for plant growth, stress response, and pathogen defense. At present, there are few systematic reports on the identification and classification of members of the peptidase M24 proteins superfamily in wheat. In this work, we identified 53 putative candidate TaM24 genes. According to the protein sequences characteristics, these members can be roughly divided into three subfamilies: I, II, III. Most TaM24 genes are complex with multiple exons, and the motifs are relatively conserved in each sub-group. Through chromosome mapping analysis, we found that the 53 genes were unevenly distributed on 19 wheat chromosomes (except 3A and 3D), of which 68% were in triads. Analysis of gene duplication events showed that 62% of TaM24 genes in wheat came from fragment duplication events, and there were no tandem duplication events to amplify genes. Analysis of the promoter sequences of TaM24 genes revealed that cis-acting elements were rich in response elements to drought, osmotic stress, ABA, and MeJA. We also studied the expression of TaM24 in wheat tissues at developmental stages and abiotic stress. Then we selected TaM24-9 as the target for further analysis. The results showed that TaM24-9 genes strengthened the drought and salt tolerance of plants. Overall, our analysis showed that members of the peptidase M24 genes may participate in the abiotic stress response and provided potential gene resources for improving wheat resistance.  相似文献   

19.
Carotenoid cleavage dioxygenases (CCDs) catalyzes the cleavage of various carotenoids into smaller apocarotenoids which are essential for plant growth and development and response to abiotic stresses. CCD family is divided into two subfamilies: 9-cis epoxycarotenoid dioxygenases (NCED) family and CCD family. A better knowledge of carotenoid biosynthesis and degradation could be useful for regulating carotenoid contents. Here, 23 CCD genes were identified from the Populus trichocarpa genome, and their characterizations and expression profiling were validated. The PtCCD members were divided into PtCCD and PtNCED subfamilies. The PtCCD family contained the PtCCD1, 4, 7, and 8 classes. The PtCCDs clustered in the same clade shared similar intron/exon structures and motif compositions and distributions. In addition, the tandem and segmental duplications resulted in the PtCCD gene expansion based on the collinearity analysis. An additional integrated collinearity analysis among poplar, Arabidopsis, rice, and willow revealed the gene pairs between poplar and willow more than that between poplar and rice. Identifying tissue-special expression patterns indicated that PtCCD genes display different expression patterns in leaves, stems, and roots. Abscisic acid (ABA) treatment and abiotic stress suggested that many PtCCD genes are responsive to osmotic stress regarding the comprehensive regulation networks. The genome-wide identification of PtCCD genes may provide the foundation for further exploring the putative regulation mechanism on osmotic stress and benefit poplar molecular breeding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号