首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial dysfunction is now recognized as a contributing factor to neurodegenerative diseases, including Alzheimer’s disease (AD). Mitochondria are signaling organelles with a variety of functions ranging from energy production to the regulation of cellular metabolism, energy homeostasis, and response to stress. The successful functioning of these complex processes is critically dependent on the accuracy of mitochondrial dynamics, which includes the ability of mitochondria to change shape and position in the cell, which is necessary to maintain proper function and quality control, especially in polarized cells such as neurons. There has been much evidence to suggest that the disruption of mitochondrial dynamics may play a critical role in the pathogenesis of AD. This review highlights aspects of altered mitochondrial dynamics in AD that may contribute to the etiology of this debilitating condition. We also discuss therapeutic strategies to improve mitochondrial dynamics and function that may provide an alternative treatment approach.  相似文献   

2.
Mitochondria are dynamic organelles that undergo rounds of fission and fusion and exhibit a wide range of morphologies that contribute to the regulation of different signaling pathways and various cellular functions. It is important to understand the differences between mitochondrial structure in health and disease so that therapies can be developed to maintain the homeostatic balance of mitochondrial dynamics. Mitochondrial disorders are multisystemic and characterized by complex and variable clinical pathologies. The dynamics of mitochondria in mitochondrial disorders is thus worthy of investigation. Therefore, in this study, we performed a comprehensive analysis of mitochondrial dynamics in ten patient-derived fibroblasts containing different mutations and deletions associated with various mitochondrial disorders. Our results suggest that the most predominant morphological signature for mitochondria in the diseased state is fragmentation, with eight out of the ten cell lines exhibiting characteristics consistent with fragmented mitochondria. To our knowledge, this is the first comprehensive study that quantifies mitochondrial dynamics in cell lines with a wide array of developmental and mitochondrial disorders. A more thorough analysis of the correlations between mitochondrial dynamics, mitochondrial genome perturbations, and bioenergetic dysfunction will aid in identifying unique morphological signatures of various mitochondrial disorders in the future.  相似文献   

3.
Mitochondria are dynamic organelles, the morphology of which is tightly linked to their functions. The interplay between the coordinated events of fusion and fission that are collectively described as mitochondrial dynamics regulates mitochondrial morphology and adjusts mitochondrial function. Over the last few years, accruing evidence established a connection between dysregulated mitochondrial dynamics and disease development and progression. Defects in key components of the machinery mediating mitochondrial fusion and fission have been linked to a wide range of pathological conditions, such as insulin resistance and obesity, neurodegenerative diseases and cancer. Here, we provide an update on the molecular mechanisms promoting mitochondrial fusion and fission in mammals and discuss the emerging association of disturbed mitochondrial dynamics with human disease.  相似文献   

4.
Aerobic interval training (AIT) can favorably affect cardiovascular diseases. However, the effects of AIT on post-myocardial infarction (MI)—associated mitochondrial dysfunctions remain unclear. In this study, we investigated the protective effects of AIT on myocardial mitochondria in post-MI rats by focusing on mitochondrial dynamics (fusion and fission). Mitochondrial respiratory functions (as measured by the respiratory control ratio (RCR) and the ratio of ADP to oxygen consumption (P/O)); complex activities; dynamic proteins (mitofusin (mfn) 1/2, type 1 optic atrophy (OPA1) and dynamin-related protein1 (DRP1)); nuclear peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α); and the oxidative signaling of extracellular signal-regulated kinase (ERK) 1/2, c-Jun NH2-terminal protein kinase (JNK) and P53 were observed. Post-MI rats exhibited mitochondrial dysfunction and adverse mitochondrial network dynamics (reduced fusion and increased fission), which was associated with activated ERK1/2-JNK-P53 signaling and decreased nuclear PGC-1α. After AIT, MI-associated mitochondrial dysfunction was improved (elevated RCR and P/O and enhanced complex I, III and IV activities); in addition, increased fusion (mfn2 and OPA1), decreased fission (DRP1), elevated nuclear PGC-1α and inactivation of the ERK1/2-JNK-P53 signaling were observed. These data demonstrate that AIT may restore the post-MI mitochondrial function by inhibiting dynamics pathological remodeling, which may be associated with inactivation of ERK1/2-JNK-P53 signaling and increase in nuclear PGC-1α expression.  相似文献   

5.
Alzheimer’s disease (AD) is one of the most common forms of neurodegeneration, defined by reduced cognitive function, which is caused by the gradual death of neurons in the brain. Recent studies have shown an age-dependent rise in the levels of voltage-dependent anion channel 1 (VDAC1) in AD. In addition, we discovered an aberrant interaction between VDAC1 and P-TAU in the brains of AD patients, which led to abnormalities in the structural and functional integrity of the mitochondria. The purpose of our study is to understand the protective effects of reduced VDAC1 against impaired mitochondrial dynamics and defective mitochondrial biogenesis in transgenic TAU mice. Recently, we crossed heterozygote VDAC1 knockout (VDAC1+/−) mice with transgenic TAU mice to obtain double-mutant VDAC1+/−/TAU mice. Our goal was to evaluate whether a partial decrease in VDAC1 lessens the amount of mitochondrial toxicity in transgenic Tau (P301L) mice. We found that mitochondrial fission proteins were significantly reduced, and mitochondrial fusion and biogenesis proteins were increased in double-mutant mice compared to TAU mice. On the basis of these discoveries, the current work may have significance for the development of reduced-VDAC1-based treatments for individuals suffering from AD as well as other tauopathies.  相似文献   

6.
7.
Mitochondria have many forms and can change their shape through fusion and fission of the outer and inner membranes, called “mitochondrial dynamics”. Mitochondrial outer membrane proteins, such as mitochondrial fission protein 1 (FIS1), mitochondrial fission factor (MFF), mitochondrial 98 dynamics proteins of 49 kDa (MiD49), and mitochondrial dynamics proteins of 51 kDa (MiD51), can aggregate at the outer mitochondrial membrane and thus attract Dynamin-related protein 1 (DRP1) from the cytoplasm to the outer mitochondrial membrane, where DRP1 can perform a scissor-like function to cut a complete mitochondrion into two separate mitochondria. Other organelles can promote mitochondrial fission alongside mitochondria. FIS1 plays an important role in mitochondrial–lysosomal contacts, differentiating itself from other mitochondrial-fission-associated proteins. The contact between the two can also induce asymmetric mitochondrial fission. The kidney is a mitochondria-rich organ, requiring large amounts of mitochondria to produce energy for blood circulation and waste elimination. Pathological increases in mitochondrial fission can lead to kidney damage that can be ameliorated by suppressing their excessive fission. This article reviews the current knowledge on the key role of mitochondrial-fission-associated proteins in the pathogenesis of kidney injury and the role of their various post-translational modifications in activation or degradation of fission-associated proteins and targeted drug therapy.  相似文献   

8.
Neuritic plaques are one of the major pathological hallmarks of Alzheimer’s disease. They are formed by the aggregation of extracellular amyloid-β protein (Aβ), which is derived from the sequential cleavage of amyloid-β precursor protein (APP) by β- and γ-secretase. BACE1 is the main β-secretase in the pathogenic process of Alzheimer’s disease, which is believed to be a rate-limiting step of Aβ production. Presenilin 1 (PS1) is the active center of the γ-secretase that participates in the APP hydrolysis process. Mutations in the PS1 gene (PSEN1) are the most common cause of early onset familial Alzheimer’s disease (FAD). The PSEN1 mutations can alter the activity of γ-secretase on the cleavage of APP. Previous studies have shown that PSEN1 mutations increase the expression and activity of BACE1 and that BACE1 expression and activity are elevated in the brains of PSEN1 mutant knock-in mice, compared with wild-type mice, as well as in the cerebral cortex of FAD patients carrying PSEN1 mutations, compared with sporadic AD patients and controls. Here, we used a Psen1 knockout cell line and a PS1 inhibitor to show that PS1 affects the expression of BACE1 in vitro. Furthermore, we used sucrose gradient fractionation combined with western blotting to analyze the distribution of BACE1, combined with a time-lapse technique to show that PS1 upregulates the distribution and trafficking of BACE1 in the endoplasmic reticulum, Golgi, and endosomes. More importantly, we found that the PSEN1 mutant S170F increases the distribution of BACE1 in the endoplasmic reticulum and changes the ratio of mature BACE1 in the trans-Golgi network. The effect of PSEN1 mutations on BACE1 may contribute to determining the phenotype of early onset FAD.  相似文献   

9.
Interactions between the mitochondrial inner and outer membranes and between mitochondria and other organelles closely correlates with the sensitivity of ovarian cancer to cisplatin and other chemotherapeutic drugs. However, the underlying mechanism remains unclear. Recently, the mitochondrial protease OMA1, which regulates internal and external signals in mitochondria by cleaving mitochondrial proteins, was shown to be related to tumor progression. Therefore, we evaluated the effect of OMA1 on the response to chemotherapeutics in ovarian cancer cells and the mouse subcutaneous tumor model. We found that OMA1 activation increased ovarian cancer sensitivity to cisplatin in vivo and in vitro. Mechanistically, in ovarian cancer, OMA1 cleaved optic atrophy 1 (OPA1), leading to mitochondrial inner membrane cristae remodeling. Simultaneously, OMA1 induced DELE1 cleavage and its cytoplasmic interaction with EIF2AK1. We also demonstrated that EIF2AK1 cooperated with the ER stress sensor EIF2AK3 to amplify the EIF2S1/ATF4 signal, resulting in the rupture of the mitochondrial outer membrane. Knockdown of OMA1 attenuated these activities and reversed apoptosis. Additionally, we found that OMA1 protease activity was regulated by the prohibitin 2 (PHB2)/stomatin-like protein 2 (STOML2) complex. Collectively, OMA1 coordinates the mitochondrial inner and outer membranes to induce ovarian cancer cell death. Thus, activating OMA1 may be a novel treatment strategy for ovarian cancer.  相似文献   

10.
Alzheimer’s Disease (AD) is the most common neurodegenerative disorder in our society, as the population ages, its incidence is expected to increase in the coming decades. The etiopathology of this disease still remains largely unclear, probably because of the highly complex and multifactorial nature of AD. However, the presence of mitochondrial dysfunction has been broadly described in AD neurons and other cellular populations within the brain, in a wide variety of models and organisms, including post-mortem humans. Mitochondria are complex organelles that play a crucial role in a wide range of cellular processes, including bioenergetics. In fact, in mammals, including humans, the main source of cellular ATP is the oxidative phosphorylation (OXPHOS), a process that occurs in the mitochondrial electron transfer chain (ETC). The last enzyme of the ETC, and therefore the ulterior generator of ATP, is the ATP synthase. Interestingly, in mammalian cells, the ATP synthase can also degrade ATP under certain conditions (ATPase), which further illustrates the crucial role of this enzyme in the regulation of cellular bioenergetics and metabolism. In this collaborative review, we aim to summarize the knowledge of the presence of dysregulated ATP synthase, and of other components of mammalian mitochondrial bioenergetics, as an early event in AD. This dysregulation can act as a trigger of the dysfunction of the organelle, which is a clear component in the etiopathology of AD. Consequently, the pharmacological modulation of the ATP synthase could be a potential strategy to prevent mitochondrial dysfunction in AD.  相似文献   

11.
APOE ε4 allele (ApoE4) is the primary genetic risk factor for sporadic Alzheimer’s disease (AD), expressed in 40–65% of all AD patients. ApoE4 has been associated to many pathological processes possibly linked to cognitive impairment, such as amyloid-β (Aβ) and tau pathologies. However, the exact mechanism underlying ApoE4 impact on AD progression is unclear, while no effective therapies are available for this highly debilitating neurodegenerative disorder. This review describes the current knowledge of ApoE4 interaction with mitochondria, causing mitochondrial dysfunction and neurotoxicity, associated with increased mitochondrial Ca2+ and reactive oxygen species (ROS) levels, and it effects on mitochondrial dynamics, namely fusion and fission, and mitophagy. Moreover, ApoE4 translocates to the nucleus, regulating the expression of genes involved in aging, Aβ production, inflammation and apoptosis, potentially linked to AD pathogenesis. Thus, novel therapeutical targets can be envisaged to counteract the effects induced by ApoE4 in AD brain.  相似文献   

12.
A proteomic approach was used to characterize potential mediators involved in the improvement in cardiac fibrosis observed with the administration of the mitochondrial antioxidant MitoQ in obese rats. Male Wistar rats were fed a standard diet (3.5% fat; CT) or a high-fat diet (35% fat; HFD) and treated with vehicle or MitoQ (200 μM) in drinking water for 7 weeks. Obesity modulated the expression of 33 proteins as compared with controls of the more than 1000 proteins identified. These include proteins related to endoplasmic reticulum (ER) stress and oxidative stress. Proteomic analyses revealed that HFD animals presented with an increase in cardiac transthyretin (TTR) protein levels, an effect that was prevented by MitoQ treatment in obese animals. This was confirmed by plasma levels, which were associated with those of cardiac levels of both binding immunoglobulin protein (BiP), a marker of ER stress, and fibrosis. TTR stimulated collagen I production and BiP in cardiac fibroblasts. This upregulation was prevented by the presence of MitoQ. In summary, the results suggest a role of TTR in cardiac fibrosis development associated with obesity and the beneficial effects of treatment with mitochondrial antioxidants.  相似文献   

13.
Sarcopenia is a chronic disease characterized by the progressive loss of skeletal muscle mass, force, and function during aging. It is an emerging public problem associated with poor quality of life, disability, frailty, and high mortality. A decline in mitochondria quality control pathways constitutes a major mechanism driving aging sarcopenia, causing abnormal organelle accumulation over a lifetime. The resulting mitochondrial dysfunction in sarcopenic muscles feedbacks systemically by releasing the myomitokines fibroblast growth factor 21 (FGF21) and growth and differentiation factor 15 (GDF15), influencing the whole-body homeostasis and dictating healthy or unhealthy aging. This review describes the principal pathways controlling mitochondrial quality, many of which are potential therapeutic targets against muscle aging, and the connection between mitochondrial dysfunction and the myomitokines FGF21 and GDF15 in the pathogenesis of aging sarcopenia.  相似文献   

14.
Calcium signaling is essential for neuronal function, and its dysregulation has been implicated across neurodegenerative diseases, including Alzheimer’s disease (AD). A close reciprocal relationship exists between calcium signaling and mitochondrial function. Growing evidence in a variety of AD models indicates that calcium dyshomeostasis drastically alters mitochondrial activity which, in turn, drives neurodegeneration. This review discusses the potential pathogenic mechanisms by which calcium impairs mitochondrial function in AD, focusing on the impact of calcium in endoplasmic reticulum (ER)–mitochondrial communication, mitochondrial transport, oxidative stress, and protein homeostasis. This review also summarizes recent data that highlight the need for exploring the mechanisms underlying calcium-mediated mitochondrial dysfunction while suggesting potential targets for modulating mitochondrial calcium levels to treat neurodegenerative diseases such as AD.  相似文献   

15.
Calmodulin (CaM) is a highly-expressed Ca2+ binding protein known to bind hundreds of protein targets. Its binding selectivity to many of these targets is partially attributed to the protein’s flexible alpha helical linker that connects its N- and C-domains. It is not well established how its linker mediates CaM’s binding to regulatory targets yet. Insights into this would be invaluable to understanding its regulation of diverse cellular signaling pathways. Therefore, we utilized Martini coarse-grained (CG) molecular dynamics simulations to probe CaM/target assembly for a model system: CaM binding to the calcineurin (CaN) regulatory domain. The simulations were conducted assuming a ‘wild-type’ calmodulin with normal flexibility of its linker, as well as a labile, highly-flexible linker variant to emulate structural changes that could be induced, for instance, by post-translational modifications. For the wild-type model, 98% of the 600 simulations across three ionic strengths adopted a bound complex within 2 μs of simulation time; of these, 1.7% sampled the fully-bound state observed in the experimentally-determined crystallographic structure. By calculating the mean-first-passage-time for these simulations, we estimated the association rate to be ka= 8.7 × 108 M1 s1, which is similar to the diffusion-limited, experimentally-determined rate of 2.2 × 108 M1 s1. Furthermore, our simulations recapitulated its well-known inverse relationship between the association rate and the solution ionic strength. In contrast, although over 97% of the labile linker simulations formed tightly-bound complexes, only 0.3% achieved the fully-bound configuration. This effect appears to stem from a difference in the ensembles of extended and collapsed states which are controlled by the linker flexibility. Therefore, our simulations suggest that variations in the CaM linker’s propensity for alpha helical secondary structure can modulate the kinetics of target binding.  相似文献   

16.
Plant mitochondria have large genomes to house a small number of key genes. Most mitochondria do not contain a whole genome. Despite these latter characteristics, the mitochondrial genome is faithfully maternally inherited. To maintain the mitochondrial genes—so important for energy production—the fusion and fission of mitochondria are critical. Fission in plants is better understood than fusion, with the dynamin-related proteins (DRP 3A and 3B) driving the constriction of the mitochondrion. How the endoplasmic reticulum and the cytoskeleton are linked to the fission process is not yet fully understood. The fusion mechanism is less well understood, as obvious orthologues are not present. However, there is a recently described gene, MIRO2, that appears to have a significant role, as does the ER and cytoskeleton. Massive mitochondrial fusion (MMF or hyperfusion) plays a significant role in plants. MMF occurs at critical times of the life cycle, prior to flowering, in the enlarging zygote and at germination, mixing the cells’ mitochondrial population—the so-called “discontinuous whole”. MMF in particular aids genome repair, the conservation of critical genes and possibly gives an energy boost to important stages of the life cycle. MMF is also important in plant regeneration, an important component of plant biotechnology.  相似文献   

17.
18.
The maintenance of mitochondrial integrity is critical for muscle health. Mitochondria, indeed, play vital roles in a wide range of cellular processes, including energy supply, Ca2+ homeostasis, retrograde signaling, cell death, and many others. All mitochondria-containing cells, including skeletal muscle cells, dispose of several pathways to maintain mitochondrial health, including mitochondrial biogenesis, mitochondrial-derived vesicles, mitochondrial dynamics (fusion and fission process shaping mitochondrial morphology), and mitophagy—the process in charge of the removal of mitochondria though autophagy. The loss of skeletal muscle mass (atrophy) is a major health problem worldwide, especially in older people. Currently, there is no treatment to counteract the progressive decline in skeletal muscle mass and strength that occurs with aging, a process termed sarcopenia. There is increasing data, including our own, suggesting that accumulation of dysfunctional mitochondria contributes to the development of sarcopenia. Impairments in mitochondrial dynamics and mitophagy were recently proposed to contribute to sarcopenia. This review summarizes the current state of knowledge on the role played by mitochondrial dynamics and mitophagy in skeletal muscle health and in the development of sarcopenia. We also highlight recent studies showing that enhancing mitophagy in skeletal muscle is a promising therapeutic target to prevent or even treat skeletal muscle dysfunction in the elderly.  相似文献   

19.
Thyroid cancer (TC) is the most common type of endocrine malignancy. Tumour formation, progression, and metastasis greatly depend on the efficacy of mitochondria—primarily, the regulation of mitochondria-mediated apoptosis, Ca2+ homeostasis, dynamics, energy production, and associated reactive oxygen species generation. Recent studies have successfully confirmed the mitochondrial aetiology of thyroid carcinogenesis. In this review, we focus on the recent progress in understanding the molecular mechanisms of thyroid cancer relating to altered mitochondrial metabolism. We also discuss the repurposing of known drugs and the induction of mitochondria-mediated apoptosis as a new trend in the development of anti-TC therapy.  相似文献   

20.
Mitochondria are dynamic organelles as they continuously undergo fission and fusion. These dynamic processes conduct not only mitochondrial network morphology but also activity regulation and quality control. Saccharomyces cerevisiae has a remarkable capacity to resist stress from dehydration/rehydration. Although mitochondria are noted for their role in desiccation tolerance, the mechanisms underlying these processes remains obscure. Here, we report that yeast cells that went through stationary growth phase have a better survival rate after dehydration/rehydration. Dynamic defective yeast cells with reduced mitochondrial genome cannot maintain the mitochondrial activity and survival rate of wild type cells. Our results demonstrate that yeast cells balance mitochondrial fusion and fission according to growth conditions, and the ability to adjust dynamic behavior aids the dehydration resistance by preserving mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号