首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Structural properties of Hg1–x Cd x Te are investigated by using first-principles calculations based on density functional theory. An energetically minimized and geometrically optimized model for Hg1–x Cd x Te was formulated. A virtual crystal approximation model for Hg1–x Cd x Te produced a poor fit to experimental lattice parameters and Vegard’s law. However, the virtual crystal approximation model provides reasonably accurate values for the band gap␣energy. An ordered alloy approximation model produced a good fit to Hg1–x Cd x Te lattice parameters and followed Vegard’s law. The ordered alloy approximation also produced a bimodal distribution in Hg-Te and Cd-Te bond lengths in agreement with experimental results.  相似文献   

2.
We present an overview concerning the modification of properties of HgCdTe solid solutions and related Hg-containing materials under surface treatment with low-energy (60–2000 eV) ion beams. The conditions for conductivity-type conversion in p-material, dose, and time dependences of the depth of the conversion layer are analyzed. The modification of electrical properties of n-type material subjected to ion-beam treatment is discussed. The suggested mechanisms of conductivity-type conversion under low-energy ion treatment of HgCdTe doped with vacancies or acceptor impurities are regarded. Properties of p-n junctions produced by this technique are reviewed, and electrical and photoelectric parameters of HgCdTe IR photodetectors fabricated by low-energy ion treatment are analyzed. Several examples of novel device structures developed with the use of the method are presented.  相似文献   

3.
Dependences of the minority-carrier lifetime and electron mobility in Cd x Hg1 ? x Te films on their indium-doping level are studied. Films with x ≈ 0.22 grown by molecular-beam epitaxy on GaAs substrates were in situ doped with indium across their entire thickness. The temperature dependences of the lifetime were studied in the temperature range 77–300 K. The decrease in the lifetime, observed as the doping level increases, is governed by the mechanism of Auger recombination. As the doping level becomes higher, the mobility decreases in qualitative agreement with theoretical calculations.  相似文献   

4.
Photoluminescence (PL) of Hg1 − x Cd x Te-based heterostructures grown by molecular-beam epitaxy (MBE) on GaAs and Si substrates has been studied. It is shown that a pronounced disruption of the long-range order in the crystal lattice is characteristic of structures of this kind. It is demonstrated that the observed disordering is mostly due to the nonequilibrium nature of MBE and can be partly eliminated by postgrowth thermal annealing. Low-temperature spectra of epitaxial layers and structures with wide potential wells are dominated by the recombination peak of an exciton localized in density-of-states tails; the energy of this peak is substantially lower than the energy gap. In quantum-well (QW) structures at low temperatures, the main PL peak is due to carrier recombination between QW levels and the energy of the emitted photon is strictly determined by the effective (with the QW levels taken into account) energy gap.  相似文献   

5.
A detailed study is presented of multicarrier transport properties in liquid-phase epitaxy (LPE)-grown n-type HgCdTe films using advanced mobility spectrum analysis techniques over the temperature range from 95 K to 300 K. Three separate electron species were identified that contribute to the total conduction, and the temperature-dependent characteristics of carrier concentration and mobility were extracted for each individual carrier species. Detailed analysis allows the three observed contributions to be assigned to carriers located in the bulk long-wave infrared (LWIR) absorbing layer, the wider-gap substrate/HgCdTe transition layer, and a surface accumulation layer. The activation energy of the dominant high-mobility LWIR bulk carrier concentration in the high temperature range gives a very good fit to the Hansen and Schmit expression for intrinsic carrier concentration in HgCdTe with a bandgap of 172 meV. The mobility of these bulk electrons follows the classic μ ~ T −3/2 dependence for the phonon scattering regime. The much lower sheet densities found for the other two, lower-mobility electron species show activation energies of the order of ~20 meV, and mobilities that are only weakly dependent on temperature and consistent with expected values for the wider-bandgap transition layer and a surface accumulation layer.  相似文献   

6.
Undoped mid-wave infrared Hg1?xCdxSe epitaxial layers have been grown to a nominal thickness of 8–14 μm on GaSb (211)B substrates by molecular beam epitaxy (MBE) using constant beam equivalent pressure ratios. The effects of growth temperature from 70°C to 120°C on epilayer quality and its electronic parameters has been examined using x-ray diffraction (XRD) rocking curves, atomic force microscopy, Nomarski optical imaging, photoconductive decay measurements, and variable magnetic field Hall effect analysis. For samples grown at 70°C, the measured values of XRD rocking curve full width at half maximum (FWHM) (116 arcsec), root mean square (RMS) surface roughness (2.7 nm), electron mobility (6.6?×?104 cm2 V?1 s?1 at 130 K), minority carrier lifetime (~?2 μs at 130 K), and background n-type doping (~?3?×?1016 cm?3 at 130 K), indicate device-grade material quality that is significantly superior to that previously published in the open literature. All of these parameters were found to degrade monotonically with increasing growth temperature, although a reasonably wide growth window exists from 70°C to 90°C, within which good quality HgCdSe can be grown via MBE.  相似文献   

7.
The electrical characteristics of p-type Cd1?xZnxTe (x=0.05) and Cd1?xMnxTe (x=0.04) single crystals with a resistivity of 103–1010 Ω cm at 300 K are studied. The conductivity and its variation with temperature are interpreted on the basis of statistics of electrons and holes in a semiconductor with deep acceptor impurities (defects), with regard to their compensation by donors. The depth of acceptor levels and the degree of their compensation are determined. The problems of attaining near intrinsic conductivity close to intrinsic are discussed.  相似文献   

8.
Results of studies of the conductivity σ and the Hall coefficient R in the Cd x Hg1 − x Te crystals with x = 0.1, 0.12, 0.14, and 0.15 are analyzed in the temperature range T = 4.2–300 K and the magnetic field range B = 0.005–2.22 T. Using data on the R(B) in low and high magnetic fields and the data on σ(T), electron and hole concentrations and mobilities are determined. It is shown that the electron concentration n in the studied samples is almost independent of T in the range 4.2–15 K, while as T increases, it increases according to the law nT r (r > 3/2), where r = f(n, T, x). It is found that r varies from 1.7 at x = 0.1 to 3.1 at compositions with x = 0.14 and 0.15. The results for n(T) are compared with theory, taking into account nonparabolicity of the variance law for ⃛(T), and with the theory of impurity states in narrow-gap and zero-gap semiconductors. It is shown that the constancy of n(T) up to ∼15 K and the strong dependence n(T) (r > 3/2) at higher temperatures are caused by the intense ionization of electrons localized at acceptor states.  相似文献   

9.
Mercury cadmium telluride (HgCdTe, or MCT) with low n-type indium doping concentration offers a means for obtaining high performance infrared detectors. Characterizing carrier transport in materials with ultra low doping (ND?=?1014 cm?3 and lower), and multi-layer material structures designed for infrared detector devices, is particularly challenging using traditional methods. In this work, Hall effect measurements with a swept B-field were used in conjunction with a multi-carrier fitting procedure and Fourier-domain mobility spectrum analysis to analyze multi-layered MCT samples. Low temperature measurements (77 K) were able to identify multiple carrier species, including an epitaxial layer (x?=?0.2195) with n-type carrier concentration of n?=?1?×?1014 cm?3 and electron mobility of μ?=?280000 cm2/Vs. The extracted electron mobility matches or exceeds prior empirical models for MCT, illustrating the outstanding material quality achievable using current epitaxial growth methods, and motivating further study to revisit previously published material parameters for MCT carrier transport. The high material quality is further demonstrated via observation of the quantum Hall effect at low temperature (5 K and below).  相似文献   

10.
The effect of redox media on the formation of acceptor centers in the Cd x Hg1 − x Te films grown by molecular beam epitaxy on the GaAs (301) substrates is studied. When tested for long-term stability, the untreated n-type films do not change their parameters, whereas the treated films exhibit a decrease in the conductivity and the mobility of charge carriers by nearly two orders of magnitude. It is shown that, on the treatments, a source of acceptors is formed at the surface, and the acceptors are most likely mercury vacancies.  相似文献   

11.
Electron spin resonance in semimagnetic Cd1?xMnxTe (0<x<0.7) and Zn1?xMnxTe (0<x<0.53) compounds was studied at temperatures of 77 and 300 K. It is found that two types of paramagnetic centers exist in Zn1?xMnxTe, one of which is related to Mn2+ ions and the other is attributed to structural defects in the crystals.  相似文献   

12.
13.
Microstructure of the CdTe (310) and CdHgTe (310) layers grown by molecular-beam epitaxy on Si substrates has been studied by the methods of transmission electron microscopy and selective etching. It is established that formation of antiphase domains in the CdHgTe/CdTe/ZnTe/Si(310) is determined by the conditions of formation of the ZnTe/Si interface. Monodomain layers can be obtained by providing conditions that enhance zinc adsorption. An increase in the growth temperature and in the pressure of Te2 vapors gives rise to antiphase domains and induces an increase in their density to the extent of the growth of poly-crystals. It is found that stacking faults exist in a CdHgTe/Si(310) heterostructure; these defects are anisotropically distributed in the bulk of grown layers. The stacking faults are predominantly located in one (111) plane, which intersects the (310) surface at an angle of 68°. The stacking faults originate at the ZnTe/Si(310) interface. The causes of origination of stacking faults and of their anisotropic distribution are discussed.  相似文献   

14.
Using spectroscopic ellipsometry, the temperature-dependence of the dielectric functions of a series of Hg1?xCdxSe thin films deposited on both ZnTe/Si(112) and GaSb(112) substrates were investigated. Initially, for each sample, room-temperature ellipsometric spectra were obtained from 35 meV to 6 eV using two different ellipsometers. Subsequently, ellipsometry spectra were obtained from 10 K to 300 K by incorporating a cryostat to the ellipsometer. Using a standard inversion technique, the spectroscopic ellipsometric data were modeled in order to obtain the temperature-dependent dielectric functions of each of the Hg1?xCdxSe thin films. The results indicate that the E1 critical point blue-shifts as a function of Cd-alloy concentration. The temperature-dependence of E1 was fitted to a Bose–Einstein occupation distribution function, which consequently allowed us to determine the electron–phonon coupling of Hg1?xCdxSe alloys. From the fitting results, we obtain a value of 17 ± 2 meV for the strength of the electron–phonon coupling for Hg1?xCdxSe alloy system, which compares nominally with the binary systems, such as CdSe and CdTe, which have values around 38 meV and 16 meV, respectively. This implies that the addition of Hg into the CdSe binary system does not significantly alter its electron–phonon coupling strength. Raman spectroscopy measurements performed on all the samples show the HgSe-like transverse optic (TO) and longitudinal optic (LO) phonons (~?130 cm?1 and?~?160 cm?1, respectively) for all the samples. While there is a slight red-shift of the HgSe-like TO peak as a function of the Cd-concentration, HgSe-like LO peak does not significantly change with the alloy concentration.  相似文献   

15.
In the zero-gap Cd x Hg1?x Te semiconductor subjected to an axial elastic strain, a band gap is formed between the bottom of the conduction band and the top of the valence band. In the new state, the band structure is found to depend on the initial arrangement of the valence subbands, i.e., on the composition defined by the parameter x. At x < 0.135–0.140, the material becomes a semiconductor with an indirect band gap. If 0.140 < x < 160, the band of light holes at k = 0, Γ6, is found to be above the Γ8 band. As a result, the material becomes a direct-gap semiconductor, and a double “metal-semiconductor-metal” phase transition in conductivity occurs. In this case, as the strain is increased, the type of conductivity of the zero-gap semiconductor at low temperatures changes according to the sequence as follows: electron metallic conductivity-electron activation conductivity-hopping conductivity-hole metallic conductivity.  相似文献   

16.
Thermopower in n-Cd0.2Hg0.8Te (6–100 K) is studied. A large effect of drag of the charge carriers by phonons αph is found. The influence of the magnetic field H on the drag thermopower is considered. It is established that the magnetic field exerts the effect mainly on the electron component of αph. The data are interpreted in the context of the theory taking into account the effect of H on thermopower αph, in which parameter A(ɛ) proportional to the static force of the drag effect is introduced. By the experimental data αph(T, H), T, and H dependences A(ɛ) are determined. It is shown that, as H increases, A(ɛ) sharply decreases. This explains a decrease in αph in the magnetic field, power index k in dependence αphT −κ, and narrowing the region of manifestation of the drag effect. It is established that at classically high fields, the drag effect in n-Cd0.2Hg0.8Te does not vanish.  相似文献   

17.
A new contactless nondestructive technique for determining the free carrier density in single-crystal samples of Cd x Hg1–xTe solid solutions and multilayer epitaxial heterostructures based on them from farinfrared reflection spectra is proposed. The characteristic point and corresponding wavenumber in the room-temperature spectral dependence of the reflectance are determined. The heavy hole density is established using calculated calibration curves. It is shown that in constructing the calibration curves, it is necessary to take into account the interaction of plasma oscillations with longitudinal optical phonons.  相似文献   

18.
The experimental temperature dependences of the photosensitivity and the data on the lifetime of nonequilibrium charge carriers in epitaxial CdxHg1?x Te layers with x = 0.20–0.23 were used to show that, in the region of intrinsic and extrinsic conductivity in n-type films grown by molecular beam epitaxy, CHCC Auger recombination is the prevailing recombination mechanism. At the same time, in p-type films grown by liquid-or vapor-phase epitaxy, it is observed that, in the region of extrinsic conductivity, CHLH Auger recombination competes with Shockley-Read recombination. The n-type films grown by molecular beam epitaxy contain a much lower concentration of recombination centers than the p-type films grown by liquid-or gasphase epitaxy.  相似文献   

19.
The search for alternative energy sources is at the forefront of applied research. In this context, thermoelectricity, i.e., direct conversion of thermal into electrical energy, plays an important role, particularly for exploitation of waste heat. Materials for such applications should exhibit thermoelectric potential and mechanical stability. PbTe-based compounds include well-known n-type and p-type compounds for thermoelectric applications in the 50°C to 600°C temperature range. This paper is concerned with the mechanical and transport properties of p-type Pb0.5Sn0.5Te:Te and PbTe<Na> samples, both of which have a hole concentration of ∼1 × 1020 cm−3. The ZT values of PbTe<Na> were found to be higher than those of Pb0.5Sn0.5Te:Te, and they exhibited a maximal value of 0.8 compared with 0.5 for Pb0.5Sn0.5Te:Te at 450°C. However, the microhardness value of 49 HV found for Pb0.5Sn0.5Te:Te was closer to that of the mechanically stable n-type PbTe (30 HV) than to that of PbTe<Na> (71 HV). Thus, although lower ZT values were obtained, from a mechanical point of view Pb0.5Sn0.5Te:Te is preferable over PbTe<Na> for practical applications.  相似文献   

20.
Treatment with low-energy ions and measurements of electrical parameters of samples have been used to study the defect structure of Cd x Hg1 − x Te films grown by liquid-phase epitaxy. The films contain neutral defects supposedly associated with tellurium nanoinclusions. Ion treatment electrically activates these defects, with a high concentration of donor centers (∼1017 cm−3) created in the films. These defects decompose in ∼103 min of aging at room temperature. Then the properties of the material are determined by the concentration of residual donors, which is found to be very low (down to ∼1014 cm−3) for the films under study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号