首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laser-assisted mechanical micromachining (LAMM) is a micro-cutting method that employs highly localized thermal softening of the material by continuous wave laser irradiation focused in front of a miniature cutting tool. However, since it is a heat-assisted process, it can induce a detrimental heat-affected zone (HAZ) in the part. This paper focuses on characterization and prediction of the HAZ produced in a LAMM-based micro-grooving process. The heat-affected zone generated by laser heating of H-13 mold steel (42 HRC) at different laser scanning speeds is analyzed for changes in microstructure and microhardness. A 3-D transient finite element model for a moving Gaussian laser heat source is developed to predict the temperature distribution in the workpiece material. The model prediction error is found to be in the 5–15% range with most values falling within 10% of the measured temperatures. The predicted temperature distribution is correlated with the HAZ and a critical temperature range (840–890 °C) corresponding to the maximum depth of the HAZ is identified using a combination of metallography, hardness testing, and thermal modeling.  相似文献   

2.
This study aims to develop an ultraprecision machining method which enables to suppress tool wear in the machining of hard material by using the tool with special chamfer. As a result, the cutting point swivel machining is proposed, and its effect is experimented in the machining of SiC. Then, the relationship between the speed ratio and tool wear is investigated. By applying the proposed machining method to curved microgrooving and curved surface machining on Tungsten Carbide, it is confirmed that cutting point swivel machining enables to realize ultraprecision machining of complex shape.  相似文献   

3.
Due to several advantages and wider range of applications, electrochemical micromachining (EMM) is considered to be one of the most effective advanced future micromachining techniques. A suitable EMM setup mainly consists of various components and sub-systems, e.g. mechanical machining unit, micro-tooling system, electrical power and controlling system and controlled electrolyte flow system etc. have been developed successfully to control electrochemical machining (ECM) parameters to meet the micromachining requirements. Investigation indicates most effective zone of predominant process parameters such as machining voltage and electrolyte concentration, which give the appreciable amount of material removal rate (MRR) with less overcut. The experimental results and analysis on EMM will open up more application possibilities for EMM.  相似文献   

4.
A hybrid laser-waterjet micromachining technology has recently been developed for near damage-free micro-ablation. It uses a laser to heat and soften the target material and a waterjet to expel the laser-softened elemental material to decrease thermal damages and increase the material removal. A computational model for the hybrid laser-waterjet micro-grooving process for single crystalline silicon is presented in this paper using an enthalpy-based finite difference method. Laser heating and waterjet cooling and expelling with the temperature-dependent silicon properties are considered in the model to predict the temperature profiles of silicon and groove characteristics under different machining conditions. The simulation results show that the introduction of a high pressure waterjet enables to remove material at its soft-solid status much below its melting temperature, while the waterjet cooling effect can reduce the workpiece temperature during the laser non-pulse period and eliminate the effect of heat accumulation, so that the thermal damage induced by laser heating is minimized. The temperature field model is also used to predict the groove depth and profile, and it is found that the model can reasonably represent the machined groove characteristics when comparing to the experimental data.  相似文献   

5.
Micromachining dynamics commonly dictate the attainable accuracy and throughput that can be obtained from micromachining operations. The dynamic behavior of miniature ultra-high-speed (UHS) spindles used in micromachining critically affects micromachining dynamics. As such, there is a strong need for effective techniques to characterize the dynamic behavior of miniature UHS spindles. This paper presents a systematic experimental approach to obtain the speed-dependent two-dimensional dynamics of miniature UHS spindles through experimental modal analysis. A miniature cylindrical artifact with 5 mm overhang is attached to (and rotating with) the spindle to enable providing the dynamic excitations to and measuring the resulting motions of the spindle. A custom-made impact excitation system is used to reproducibly excite the spindle dynamics up to 20 kHz while controlling the impact force. The resulting radial motions of the spindle are measured in two mutually perpendicular directions using two independent fiber-optic laser Doppler vibrometers (LDVs). To ensure the mutual orthogonality of the measurements, the two lasers are aligned precisely using an optical procedure. A frequency-domain filtering approach is used to remove the unwanted spindle motion data from the measurements, thereby isolating the dynamic response. The spindle dynamics is then represented in the form of frequency response functions (FRFs). A global curve-fitting technique is applied to identify natural frequencies and damping ratios. The developed approach is demonstrated on a miniature UHS spindle with aerodynamic bearings, and dynamic characteristics are analyzed at different spindle speeds and collet pressures. The spindle speed is shown to have a significant effect on dynamic response, especially at higher spindle speeds, while the collet pressure is observed not to have any significant effect on the spindle dynamics. It is concluded that the presented approach can be used to characterize the dynamics of miniature UHS spindles effectively.  相似文献   

6.
This study is focused on numerical modeling analysis of laser-assisted micro-milling (LAMM) of difficult-to-machine alloys, such as Ti6Al4V, Inconel 718, and stainless steel AISI 422. Multiple LAMM tests are performed on these materials in side cutting of bulk and fin workpiece configurations with 100-300 μm diameter micro endmills. A 3D transient finite volume prismatic thermal model is used to quantitatively analyse the material temperature increase in the machined chamfer due to laser-assist during the LAMM process. Novel 2D finite element (FE) models are developed in ABAQUS to simulate the continuous chip formation with varying chip thickness with the strain gradient constitutive material models developed for the size effect in micro-milling. The steady-state workpiece and tool cutting temperatures after multiple milling cycles are analysed with a heat transfer model based on the chip formation analysis and the prismatic thermal model predictions. An empirical tool wear model is implemented in the finite element analysis to predict tool wear in the LAMM side cutting process. The FE model results are discussed in chip formation, flow stresses, temperatures and velocity fields to great details, which relate to the surface integrity analysis and built-up edge (BUE) formation in micro-milling.  相似文献   

7.
Laser assisted micro-milling of hard-to-machine materials   总被引:2,自引:0,他引:2  
There is a need for developing hybrid micro-manufacturing processes capable of generating three-dimensional micro-scale features in hard-to-machine materials. This paper deals with the development of the laser assisted micro-milling process for which a novel 4-axis machine has been designed and built. This paper presents the results of experiments on laser assisted micro-milling of hardened A2 tool steel (62 HRc). The dimensional accuracy of the micro-milled feature and surface finish obtained with and without laser heating are compared and discussed. Scientific explanations for the different observations are given.  相似文献   

8.
9.
Laser aided direct metal/material deposition (DMD) process builds metallic parts layer-by-layer directly from the CAD representation. In general, the process uses powdered metal/materials fed into a melt-pool, creating fully dense parts. Success of this technology in the die and tool industry depends on the parts quality to be achieved. To obtain designed geometric dimensions and material properties, delicate control of the parameters such as laser power, spot diameter, traverse speed and powder mass flow rate is critical. In this paper, the dimensional and material characteristics of directed deposited H13 tool steel by CO2 laser are investigated for the DMD process with a feedback height control system. The relationships between DMD process variables and the product characteristics are analyzed using statistical techniques. The performance of the DMD process is examined with the material characteristics of hardness, porosity, microstructure, and composition.  相似文献   

10.
D.W. Kang  C.M. Lee 《CIRP Annals》2014,63(1):109-112
Laser-assisted machining (LAM) has recently been evaluated as an effective process for machining of difficult-to-cut materials, such as ceramics. It is more difficult to reach a sufficient preheating temperature in laser-assisted milling than in turning. A newly developed back-and-forth preheating method is proposed to obtain proper temperature at the laser spot, which is preceding a cutting tool. Experiments were successfully performed using the calculated laser power and feed, as determined by using finite element analyses. In addition, a constitutive equation of the LAM is proposed. The proposed method and constitutive equation can be applied to the laser-assisted milling of ceramics.  相似文献   

11.
S. Min  D. Dornfeld 《CIRP Annals》2008,57(1):109-112
The surface quality and the dimensional accuracy are important criteria for micro-mold production, specially for micro-fluidic devices. Important cutting parameters that affect the quality of vertical side walls created by the peripheral cutting edge in micro-end-milling operations were identified. Surface roughness and form error were used to define the quality of side walls on stainless steel and aluminum workpieces. An acoustic emission sensor was used to detect initial contact between a tool and a workpiece for higher dimensional accuracy where the referencing is a critical element for precision micromachining feature creation.  相似文献   

12.
For productive manufacturing of an accurate small-scale wine-glass gyroscope, a hybrid fabrication process consisting of either electric discharge machining, chemical etching, or micro-mechanical milling have been proposed. A comparison of silicon cavity fabrication processes has been conducted in terms of productivity, quality and geometrical accuracy, aiming at the use of the cavity as a mold for creating a thin wall diamond hemisphere, which is the main component of a wine-glass gyroscope. The results have shown that the EDM process, combined with chemical etching, can yield the highest productivity but with limited shape accuracy. The use of mechanical micro-milling, while less productive than EDM and etching, produces a superior quality and geometric accuracy.  相似文献   

13.
在单轴平面应变压缩条件下,采用FLAC模拟扩容角对具有初始随机材料缺陷的光滑端面岩石试样的破坏过程及对应力一应变曲线的影响。利用FISH函数于试样内部规定初始缺陷。密实的岩石服从莫尔库仑剪破坏与拉破坏复合的破坏准则,破坏之后呈现应变软化一理想塑性行为。缺陷在破坏之后经历理想塑性行为。扩容角较高时试样内部最终发生破坏的单元数目较多。随着扩容角的增加,剪切带变得粗壮和陡峭。扩容角对应力一轴向应变曲线影响不大。扩容角增加时,在应变软化阶段,应力一侧向应变曲线变平缓,根据作者过去提出的理论公式,这是由于剪切带宽度增加的贡献超过剪切带倾角增加的贡献所致。当扩容角较高时,应力峰值时试样内部的最大剪切应变增量较高,因而试样破坏的前兆比较明显。剪切带倾角的数值结果与Arthur倾角比较接近,未能超过Coulomb倾角。扩容角越大,剪切带最终可以获得越来越高的剪切应变和体积应变。  相似文献   

14.
使用随温度变化的材料热—力学参量,研究了屈服强度、热导率、比热容、弹性模量、线膨胀系数、密度及泊松比7个热物理与力学参量对焊接残余应力峰值的影响.结果表明,屈服强度和热导率的变化范围较大,对纵向残余应力峰值影响显著;比热容、弹性模量、线膨胀系数和密度的变化范围较小,对纵向残余应力峰值影响不大;泊松比的变化范围与线膨胀系数和密度的相当,但对纵向残余应力峰值影响非常小.使用切条释放法对铝合金2A12-T4平板中纵向焊接残余应力模拟结果进行试验验证,模拟结果与试验结果吻合良好,证明了模拟结果的正确性.  相似文献   

15.
The phenomenon of material side flow represents an important aspect of machined surface quality during hard turning. In this paper, an experimental study was performed to investigate the main features of this phenomenon. The effects of process parameters including edge preparation, nose radius, feed and tool wear on material side flow were examined. Two possible mechanisms for material side flow were investigated. In the first one, the material is squeezed between the tool flank face and the machined surface when chip thickness is less than a minimum value. In the second mechanism, the plastified material in the cutting zone flows through the worn trailing edge to the side of the tool. Both of these mechanisms can exist simultaneously. The results obtained from surface examination showed a strong correlation between edge preparation and material side flow. An increase in the tool nose radius resulted in a remarkable increase of material side flow. Feed had an indirect effect on material side flow. In addition, tool wear significantly affected the existence of material side flow on the machined surface. An increase in tool wear promoted the occurrence of material side flow.  相似文献   

16.
Different material properties leads to different metal fracture behaviors.Even if the powder material is composed of plastic metal,the fracture still does not show macroscopic plastic deformation characteristics if the material contains a large number of voids.Eight-node isoparametric elastic-plastic finite element method was used to simulate the tensile process of sintered powder material.By setting a number of voids in the analyzed metal cuboid,the initial density was taken into consideration.The material properties of the three-dimensional solid for the tensile simulation were defined with reference to the known pure iron material parameters,The load-displacement curves during elongation were obtained with a universal testing machine,and then the simulated curves were compared with the experimental results.The factors that cause the stress concentration and strength decrease were analyzed according to the simulated equivalent von Mises stress distribution.  相似文献   

17.
中厚板钛合金激光-CMT复合焊接工艺特性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
通过采用激光-CMT焊接的方法对10 mm厚TC4钛合金实现了不开坡口单面焊双面成形,并对焊缝的组织、力学性能及腐蚀性能进行了测试分析. 结果表明,该最优参数下形成的焊接接头中主要由大量的α'马氏体及初生的α相构成,且存在网篮状组织,焊缝区域的显微硬度大于母材区域,可达380 HV,且由于激光作用区拥有更大的冷却速度,焊缝底部生成了更多的α'马氏体,导致焊缝底部硬度比电弧作用区更高. 焊接接头抗拉强度可达到916 MPa,断后伸长率达到16.08%,拉伸断裂结果为韧性断裂,焊缝组织的性能明显优于母材.焊缝处的抗腐蚀性能优于母材,这是因为焊缝组织有更细小的晶粒及大量位错,提升了钝化能力并阻碍了Cl?的扩散.  相似文献   

18.

激光焊接为动力电池铝合金薄板焊接提供了有效技术手段,然而传统激光焊接工艺在高焊接速度要求下易产生飞溅、气孔等缺陷,影响构件的服役性能. 文中开展可调环形光斑激光搭接焊工艺调控研究,阐明了中心-环形激光功率对焊缝成形的影响规律,在此基础上,确定了无飞溅、少气孔、大搭接面熔宽的高速稳定焊接工艺窗口. 在上述工艺窗口范围内,以小熔深波动与大搭接面熔宽作为目标,基于Kriging模型与NSGA-Ⅱ遗传算法开展多目标工艺参数优化. 经验证,在焊接速度70 mm/s以上,焊缝成形质量进一步得到提升,搭接面熔宽提高8.89%、熔深波动小于10%、无明显成形缺陷.

  相似文献   

19.
利用丝材电弧增材制造的方法制备从TA15过渡为TC11的梯度结构材料,并对该梯度结构材料的晶粒形态、化学成分、显微组织和力学性能沿沉积方向的变化情况进行表征和研究.结果表明,从TA15到TC11,晶粒尺寸减小,并且发生从柱状晶到等轴晶的转变.合金元素的含量在短距离内变化很大,突变区的宽度为800μm.TA15区域和TC...  相似文献   

20.
A systematic approach to material eligibility for the cold-spray process   总被引:3,自引:0,他引:3  
This article represents an effort to systematize an understanding of the cold-spray process and the suitability of materials for such a process. The evaluation is based on a brief analysis of the powder particle impact and literature research concerning shock-compression phenomena in matter and related physical effects, such as impact heating and dynamic yielding. The finite-element modeling (FEM) allows the estimation of the maximum impact pressures, the deformation rates, and the deformation kinetics during impact. The calculations can be verified experimentally and are supported by the published data. From a brief analysis of the equations of state applied to shock compression, key material parameters are derived and investigated. A parameterization of physical properties and correlation with the crystal types endeavors to provide a qualitative ranking of material suitability. The original version of this article was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Science and Applying the Technology, International Thermal Spray Conference (Orlando, FL), May 5–8, 2003, Basil R. Marple and Christian Moreau, Eds., ASM International, 2003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号