首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
This paper presents the results of simulations using a two-phase separated flow model to study the heat transfer and flow characteristics of refrigerants during evaporation in a horizontal tube. A one-dimensional annular flow model of the evaporation of refrigerants under constant heat flux is developed. The basic physical equations governing flow are established from the conservation of mass, energy and momentum. The model is validated by comparing it with the experimental data reported in literature. The present model can be used to predict the variation of the temperature, heat transfer coefficient and pressure drop of various pure refrigerants flowing along a horizontal tube. It is found that the refrigerant temperature decreases along the tube corresponding to the decreasing of its saturation pressure. The liquid heat transfer coefficient increases with the axial length due to the reducing thickness of the liquid film. The evaporation rate of liquid refrigerant tends to decrease with increasing axial length, due to the decreasing latent heat transfer through the liquid–vapor interface. The developed model can be considered as an effective tool for evaporator design and can be used to choose appropriate refrigerants under designed conditions.  相似文献   

2.
In this numerical study, a channel flow of turbulent mixed convection of heat and mass transfer with film evaporation has been conducted. The turbulent hot air flows downward of the vertical channel and is cooled by the laminar liquid film on both sides of the channel with thermally insulated walls. The effect of gas–liquid phase coupling, variable thermophysical properties and film vaporization are considered in the analysis. In the air stream, the kε turbulent model has been utilized to formulate the turbulent flow. Parameters used in this study are the mass flow rate of the liquid film B, Reynolds number Re, and the free stream temperature of the hot air To. Results show that the heat flux was dramatically increases due to the evaporation of liquid water film. The heat transfer increases as the mass flow rate of the liquid film decreases, while the Reynolds number and inlet temperature increase, and the influences of the Re and To are more significant than that of the liquid flow rate. It is also found that liquid film helps lowering the heat and mass transfer rate from the hot gas in the turbulent channel, especially at the downstream.  相似文献   

3.
Effects of inlet conditions on film evaporation along an inclined plate   总被引:1,自引:0,他引:1  
The evaporation of falling water liquid film in air flow is used in different solar energy applications as drying, distillation and desalination, and desiccant systems. The good understanding of the hydrodynamics and heat exchange in falling liquid film and gas flow, with interfacial heat and mass transfer, can be applied in improving solar systems performance. The solar system performance is dependent on the operating conditions, system conception and related to several physical parameters, where the effects of some of these parameters are not completely clarified. In the present numerical study, we examine the effects of inlet conditions on the evaporation processes along the gas–liquid interface. The liquid film streams over an inclined plate subjected to different thermal conditions. Liquid and gas flows are approached by two coupled laminar boundary-layers. The numerical solution is obtained by utilizing an implicit finite-difference box method. In this analysis an air–water system is considered and the coupled effects of inclination, inlet liquid mass flow rate and gas velocity are examined. The results show that, for imposed heat flux or uniform wall temperature, the effect of inclination is highly dependent on the liquid mass flow rate and gas velocity. An increase in the liquid mass flow rate causes an enhancement of the effect of inclination on the heat and mass transfer. The inclination affects the heat and mass transfer, especially at lower gas velocities. In the range of inclination angles of 0–10°, an increase in the inclination improves the evaporation by increasing the vapor mass flow rate. The maximum effect of inclination is nearly achieved at an inclination angle of 10°.  相似文献   

4.
吸收器是吸收式制冷系统的重要部件.溴化锂溶液的降膜吸收是吸收器中最常见的传质传热形式之一.通过对溴化锂溶液在降膜吸收过程中传质和传热特性的分析,使用基于有限元法的COMSOL Multiphysics软件,建立了溴化锂溶液和水蒸汽降膜吸收的物理数学模型,计算了液膜内部温度和质量分数的分布、界面处传质通量、界面处传热通量...  相似文献   

5.
The investigation of mixed convection heat transfer enhancement through film evaporation in inclined square ducts has been numerically examined in detail. The main parameters discussed in this work include the inclined angle, the wetted wall temperature and the relative humidity of the moist air mixture. The numerical results of the local friction factor, Nusselt number and Sherwood number are presented for moist air mixture system. Attention was particular paid to the effects of latent heat transport on the heat transfer enhancement. Results show that the latent heat transport with film evaporation augments tremendously the heat transfer rate. The heat transfer rate can be enhanced to be 10 times of that without mass transfer, especially for a system with a lower temperature. Besides, better heat and mass transfer rates related with film evaporation are found for case with a higher wetted wall temperature. The increase in the relative humidity of moist air in the ambient causes the decrease in heat transfer enhancement.  相似文献   

6.
Hideo Mori 《传热工程》2016,37(7-8):686-695
For the development of a high-performance heat exchanger using small channels or minichannels for air-conditioning systems, it is necessary to clarify the characteristics of vapor‐liquid two-phase flow and heat transfer of refrigerants in small-diameter tubes. In this keynote paper, the related research works that have already been performed by the author and coworkers are introduced. Based on the observations and experiments of R410A flowing in small-diameter circular and noncircular tubes with hydraulic diameter of about 1 mm, the characteristics of vapor‐liquid two-phase flow pattern and boiling heat transfer were clarified. In low quality or mass flux and low heat flux condition, in which the flow was mainly slug, the “liquid film conduction evaporation” heat transfer peculiar to small-diameter tubes prevailed and exhibited considerably good heat transfer compared to nucleate boiling and forced convection evaporation heat transfer. The effects of the tube cross-sectional shape and flow direction on the heat transfer primarily appeared in the region of the “liquid film conduction evaporation” heat transfer. A new heat transfer correlation considering all of three contributions has been developed for small circular tubes.  相似文献   

7.
The present study analyzes theoretically the non-Darcian effects and inlet conditions of forced convection flow with liquid film evaporation in a porous medium. The physical scheme includes a liquid–air streams combined system; the liquid film falls down along the plate and is exposed to a cocurrent forced moist air stream. The axial momentum, energy, and concentration equations for the air and water flows are developed based on the steady two-dimensional (2-D) laminar boundary layer model. The non-Darcian convective, boundary, and inertia effects are considered to describe the momentum characteristics of a porous medium. The paper clearly describes the temperature and mass concentration variations at the liquid–air interface and provides the heat and mass transfer distributions along the heated plate. Then, the paper further evaluates the non-Darcian effects and inlet conditions on the heat transfer and evaporating rate of liquid film evaporation. The numerical results show that latent heat transfer plays the dominant heat transfer role. Carrying out a parametric analysis indicates that higher air Reynolds number, higher wetted wall temperature, and lower moist air relative humidity will produce a better evaporating rate and heat transfer rate. In addition, a non-Darcy model should be adopted in the present study. The maximum error for predictions of heat and mass transfer performance will be 21% when the Darcy model is used.  相似文献   

8.
The investigation of mixed convection heat and mass transfer in vertical ducts with film evaporation and condensation has been numerically examined in detail. This work is primarily focused on the effect of film evaporation and condensation along the wetted wall with constant temperature and concentration on the heat and mass transfer in rectangular vertical ducts. The numerical results, including the distributions of dimensionless axial velocity, temperature and concentration distributions, Nusselt number as well as Sherwood number are presented for moist air mixture system with different wall temperatures and aspect ratios of the rectangular ducts. The results show that the latent heat transport with film evaporation and condensation augments tremendously the heat transfer rate. Better heat transfer enhancement related with film evaporation is found for a system with a higher wall temperature.  相似文献   

9.
The falling film evaporation of R134a with nucleate boiling outside a triangular-pitch (2-3-2-3) tube bundle is experimentally investigated, and the effects of saturation temperature, film flow rate and heat flux on heat transfer performance are studied. To study the effect of cross vapor stream on the falling film evaporation, a novel test section is designed, including the tube bundle, liquid and extra vapor distributors. The measurements without extra vapor are conducted at the saturation temperature of 6, 10 and 16°C, film Reynolds number of 220 to 2650, and heat flux of 20 to 60 kWm?2. Cross vapor stream effect experiments are operated at three heat fluxes 20, 30, and 40 kWm?2 and two film flow rates of 0.035 and 0.07 kgm?1s?1, and the vapor velocity at the smallest clearance in the tube bundle varies from 0 to 2.4 ms?1. The results indicate that: film flow rate, heat flux and saturation temperature significantly influence the heat transfer; the cross vapor stream either promote or inhibit the falling film evaporation, depending on the tube position, film flow rate, heat flux and vapor velocity.  相似文献   

10.
Numerical study of the evaporation in laminar humid air flow of a liquid film flowing over an inclined plate. By using an implicit centered finite differences method with a non-uniform grid, the authors study numerically the evaporation of a thin liquid film flowing over an inclined plate in a forced humid-air flow. They consider the existence of two-dimensional laminar boundary-layers with variable physical properties and show that the term of enthalpy diffusion is always negligible, whether the plate is adiabatic, isothermal or heated by a constant heat flux density. By using in the liquid film transfer equations which are one-dimensional, partially two-dimensional and two-dimensional, the authors additionally show the following features. If the plate is adiabatic, the liquid mass flow rate is without influence on the transfers and the gas–liquid interface behaves like an isotherm surface at rest. In this case, one may use a one-dimensional model in the film whatever liquid mass flow rate is. If the wall is isotherm or heated by a constant heat flux and when the liquid mass flow rate is less than 10−3 kg·m−1·s−1, the one-dimensional model is sufficient; if it is included in the interval [10−3 kg·m−1·s−1, 10−2 kg·m−1·s−1[, the partially two-dimensional model is useful; if it is superior to 10−2 kg·m−1·s−1, it is necessary to use the two-dimensional model. Generally, whatever the thermal conditions on the plate are, heat transfer is dominated by the liquid-vapor transition.  相似文献   

11.
The heat transfer mechanisms of horizontally impacting sprays were studied experimentally. An impulse-jet liquid spray system and a solid particle spray system were used. The liquid spray system is capable of producing uniform droplets with the independent variables of droplet size, velocity, liquid flow rate, and air velocity. The horizontally impacting sprays give a lower heat transfer at film boiling than the corresponding vertically impacting spray. The film boiling heat transfer is mainly controlled by the liquid mass flux. At low liquid mass flux and low droplet Weber number, the heat transfer increases with the droplet Weber number. At high droplet Weber number or high liquid mass flux, the heat transfer is not significantly affected by the droplet Weber number.  相似文献   

12.
The dynamics and heat transfer characteristics of flow boiling bubble train moving in a micro channel is studied numerically. The coupled level set and volume of fluid (CLSVOF) is utilized to track interface and a non-equilibrium phase change model is applied to calculate the interface temperature as well as heat flux jump. The working fluid is R134a and the wall material is aluminum. The fluid enters the channel with a constant mass flux (335 kg/m2 1 s), and the boundary wall is heated with constant heat flux (14 kW/m2). The growth of bubbles and the transition of flow regime are compared to an experimental visualization. Moreover, the bubble evaporation rate and wall heat transfer coefficient have been examined, respectively. Local heat transfer is significantly enhanced by evaporation occurring vicinity of interface of the bubbles. The local wall temperature is found to be dependent on the thickness of the liquid film between the bubble train and the wall.  相似文献   

13.
This paper considers the flow of a liquid film sheared by gas flow in a channel with a heater placed at the bottom wall. A one-sided 2D model is considered for weakly heated films. The heat and mass transfer problem is also investigated in the framework of a two-sided model. The exact solution to the problem of heat transfer is obtained for a linear velocity profile. The double effect of Marangoni forces is demonstrated by the formation of a liquid bump in the vicinity of the heater’s upper edge and film thinning in the vicinity of the lower edge. The criterion determining the occurrence of “ripples” on the film surface upstream from the bump is found. Numerical analysis reveals that evaporation dramatically changes the temperature distribution, and hence, thermocapillary forces on the gas–liquid interface. All transport phenomena (convection to liquid and gas, evaporation) are found to be important for relatively thin films, and the thermal entry length is a determining factor for heaters of finite length. The thermal entry length depends on film thickness, which can be regulated by gas flow rate or channel height. The influence of the convective heat transfer mechanism is much more prominent for relatively high values of the liquid Reynolds number. The liquid–gas interface Biot number is shown to be a sectional-hyperbolic function of a longitudinal axis variable. Some qualitative and quantitative comparisons with experimental results are presented.  相似文献   

14.
Experiments were performed to evaluate the evaporative heat transfer characteristics of spray cooling of water on plain and micro-structured silicon surfaces at very low spray mass fluxes. The textured surface is made of an array of square micro-studs. It was found that the Bond number of the microstructures is the primary factor responsible for the heat transfer enhancement of evaporative spray cooling on micro-structured silicon surface in the present study. A qualitative study of evaporation of a single water droplet on plain and textured silicon surface shows that the capillary force within the microstructures is effective in spreading the deposited liquid film, thus increasing the evaporation rates. Four distinct heat transfer regimes, which are the flooded, thin film, partial dryout, and dryout regimes, were identified for evaporative spray cooling on micro-structured silicon surfaces. The microstructures provided better cooling performance in the thin film and partial dryout regime and higher liquid film breakup heat flux, because more water was retained on the heat transfer surface due to the capillary force. Heat transfer coefficient and temperature stability deteriorated greatly once the liquid film breakup occurred. The liquid film breakup heat flux increases with the Bond number. Effects of surface material, system orientation and spray mass flux were also addressed in this study.  相似文献   

15.
Liquid nitrogen, as a coolant, is generally applied in cell vitrification cryopreservation. It takes heat from the carrier with cell samples through its violent evaporation on the carrier surface. As a result, the temperature of the carrier plunges dramatically. This article focuses on the unsteady evaporation heat transfer characteristics of liquid nitrogen on a microstructured surface etched into the frozen carrier surface at a high superheat level. The heat flux and evaporation heat transfer coefficient of liquid nitrogen were investigated using a lumped capacitance method. The experimental results showed that the cooling rate of the thin film evaporation on the microstructured surface is obviously higher than that of pool boiling, which is currently being used for cell cryopreservation. The heat flux and the evaporation heat transfer coefficient work together to present a parabolic trend with the superheat decreasing during this heat transfer process. Besides, the microstructure of the surface has an important effect on the evaporation heat transfer of liquid nitrogen. The larger the thin film evaporation zone is, the higher the heat transfer coefficient is. The current investigation results in a cell cryopreservation method through vitrification with relatively low concentrations of cryoprotectants.  相似文献   

16.
In this paper, an experimental investigation on the heat transfer of saturated water falling film on a single horizontal plain tube is presented. The water film falling on the outside of the tube has been heated by the condensing steam flowing in the tube, and the heat transfer coefficient between the water film and the steam has been measured. Experiments were performed at saturation temperatures of liquid film and steam as 58°C and 61°C, and 61°C and 65°C, a tube pitch of 57.16 mm, heat fluxes from 10 to 50 kW m-2, and film flow rate per unit of length of the tube up to 0.12 kg m?1 s?1. Brass plain tubes with external diameters of 25.4 mm and lengths of 950 mm were used in the experiments. The experimental results show that the heat transfer coefficient increases with the increasing film flow rate and heat flux, and the quality of vapor has an obvious influence on the heat transfer performance of falling film evaporation. The coupling of condensation and evaporation heat transfer inside and outside the tube is investigated qualitatively in this paper.  相似文献   

17.
为开发适用于低温热源的高效降膜蒸发换热装置,本研究采用FLUENT软件对低沸点有机工质氟利昂(R113)在竖直管内汽液两相逆流降膜蒸发进行模拟研究。汽液界面捕捉选用VOF模型,并通过udf编程模拟汽液两相蒸发传热,研究了喷淋密度、热流密度及入口温度对R113降膜蒸发换热的影响。结果表明:在一定结构参数下,存在降膜换热最佳喷淋密度;在一定喷淋密度下,热流密度对降膜换热影响显著,且热流密度越高换热效果越好;随着入口温度升高,降膜换热效果削弱,且高于某温度后其对降膜换热几乎没有影响。  相似文献   

18.
自由表面摩擦和蒸发对过冷下降液膜传热的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
师晋生  陈玉宙 《热能动力工程》2001,16(4):383-385,392
从理论上对下降液膜在自由表面上存在反向剪切力和蒸发散热情况下的换热特性进行了分析,得到了膜厚、换热系数的无量纲关系式,讨论了剪切力、液膜雷诺数、壁面热流、蒸发率对流动和传热的影响。  相似文献   

19.
In this paper we present experimental data on heat transfer and pressure drop characteristics at flow boiling of refrigerant R-134a in a horizontal microchannel heat sink. The primary objective of this study was to experimentally establish how the local heat transfer coefficient and pressure drop correlate with the heat flux, mass flux, and vapor quality. The copper microchannel heat sink contains 21 microchannels with 335 × 930 μm2 cross section. The microchannel plate and heating block were divided by the partition wall for the local heat flux measurements. Distribution of local heat transfer coefficients along the length and width of the microchannel plate was measured in the range of external heat fluxes from 50 to 500 kW/m2; the mass flux varied within 200–600 kg/m2-s, and pressure varied within 6–16 bar. The obvious impact of heat flux on the magnitude of heat transfer coefficient was observed. It showed that nucleate boiling is the dominant mechanism for heat transfer. A new model of flow boiling heat transfer, considering nucleate boiling suppression and liquid film evaporation, was proposed and verified experimentally in this paper.  相似文献   

20.
Water evaporation from an homogeneous porous media, which is submitted to radiative and convective fluxes on its interface with air, is analysed by the energy balance equations and the classical transfer equations. Two Ievels are considered: the surface of the body, or its interface with air, and the deep front of evaporation. In this first analysis, the part located between these two levels is considered only as the site of a heat conductive flux and a water vapour flux, all liquid water flux is supposed negligible compared with water vapour flux. Then, it is possible to express the density of latent heat flux and the equilibrium values which characterize the level of the evaporation front and the surface of the body, such as temperature and water vapour pressure. These expressions are functions of the characteristics of air flow, radiative balance and coefficients, mainly two unidimensional numbers one of which has been used in the study of heat-transfer phenomena by Luikov [1]; these coefficients are the Brun numbers referred to heat and mass transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号