首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
3.
Gcn5p is the catalytic subunit of several type A histone acetyltransferases (HATs). Previous studies performed under a limited range of solution conditions have found that nucleosome core particles and nucleosomal arrays can be acetylated by Gcn5p only when it is complexed with other proteins, e.g. Gcn5-Ada, HAT-A2, and SAGA. Here we demonstrate that when assayed in buffer containing optimum concentrations of either NaCl or MgCl2, purified yeast recombinant Gcn5p (rGcn5p) efficiently acetylates both nucleosome core particles and nucleosomal arrays. Furthermore, under conditions where nucleosomal arrays are extensively folded, rGcn5p acetylates folded arrays approximately 40% faster than nucleosome core particles. Finally, rGcn5p polyacetylates the N termini of free histone H3 but only monoacetylates H3 in nucleosomes and nucleosomal arrays. These results demonstrate both that rGcn5p in and of itself is catalytically active when assayed under optimal solution conditions and that this enzyme prefers folded nucleosomal arrays as a substrate. They further suggest that the structure of the histone H3 N terminus, and concomitantly the accessibility of the H3 acetylation sites, changes upon assembly into nucleosomes and nucleosomal arrays.  相似文献   

4.
5.
The organization of telomeric chromatin differs from that of bulk chromatin in some peculiar features, such as the unusually short nucleosomal spacing found in vertebrates. Telomeric DNAs are straight, since they consist mostly of 6-8-bp repeated sequences, therefore out of phase with the B DNA period. This feature should be of relevance in nucleosome formation, suggesting the usefulness of studying simple model systems of nucleosome assembly. We reconstituted nucleosomes in vitro, by using purified histone octamers and/or by octamer transfer from chicken erythrocyte nucleosomes, onto telomeric sequences from human, Arabidopsis thaliana, and Saccharomyces cerevisiae. All of these telomeres contain GGG and GGT triplets but are characterized by different repeat lengths (6, 7, and 8 bp). The free energies involved in the association process are the highest among the biological sequences so far assayed, suggesting a main role of DNA flexibility in the assembly of telomeric chromatin. Digestion studies with DNase I, hydroxyl radicals, exonuclease III, and lambda exonuclease indicate that telomeric nucleosomes are characterized by multiple translational positioning without rotational phasing, whereas the telomeric DNA folding around the histone octamer shows the canonical periodicity of about 10.2 bp. The experimental results and a theoretical simulation of DNase I digestion indicate a multiple nucleosome positioning with the periodicity of telomeric DNA. This suggests a main role of local chemical recognition between telomeric sequences and the histone octamer in nucleosome assembly.  相似文献   

6.
7.
The mechanisms responsible for organizing linear arrays of nucleosomes into the three-dimensional structure of chromatin are still largely unknown. In a companion paper (Leuba, S. H., et al. 1998. Biophys. J. 74:2823-2829), we study the contributions of linker histone domains and the N-terminal tail of core histone H3 to extended chromatin fiber structure by scanning force microscopy imaging of mildly trypsinized fibers. Here we complement and extend these studies by scanning force microscopy imaging of selectively reconstituted chromatin fibers, which differ in subtle but distinctive ways in their histone composition. We demonstrate an absolute requirement for the globular domain of the linker histones and a structural redundancy of the tails of linker histones and of histone H3 in determining conformational stability.  相似文献   

8.
9.
The interaction of the linker histones H1 and H5 from chicken erythrocyte chromatin with pBR322 was studied as a function of the number of superhelical turns in circular plasmid molecules. Supercoiled plasmid DNA was relaxed with topoisomerase I so that a population with a narrow distribution of topoisomers, containing from zero to five superhelical turns, was obtained. None of the topoisomers contained alternative non-B-DNA structures. Histone-DNA complexes formed at either 25 or 100 mM NaCl final concentration and at histone-DNA molar ratios ranging from 10 to 150 were analyzed by agarose gel electrophoresis. The patterns of disappearance of individual topoisomer bands from the gel were interpreted as an indication of preference of the linker histones for crossovers of double-helical DNA. This preference was observed at both salt concentrations, being more pronounced under conditions of low ionic strength. Isolated H5 globular domain also caused selective disappearance of topoisomers from the gel, but it did so only at very high peptide-DNA molar ratios. The observed preference of the linker histones for crossovers of double-helical DNA is viewed as a part of the mechanism involved in the sealing of the two turns of DNA around the histone octamer.  相似文献   

10.
Little is known about the mechanisms that organize linear arrays of nucleosomes into the three-dimensional structures of extended and condensed chromatin fibers. We have earlier defined, from scanning force microscopy (SFM) and mathematical modeling, a set of simple structural determinants of extended fiber morphology, the critical parameters being the entry-exit angle between consecutive linkers and linker length. Here we study the contributions of the structural domains of the linker histones (LHs) and of the N-terminus of histone H3 to extended fiber morphology by SFM imaging of progressively trypsinized chromatin fibers. We find that cleavage of LH tails is associated with a lengthening of the internucleosomal center-to-center distance, and that the somewhat later cleavage of the N-terminus of histone H3 is associated with a flattening of the fiber. The persistence of the "zigzag" fiber morphology, even at the latest stages of trypsin digestion, can be attributed to the retention of the globular domain of LH in the fiber.  相似文献   

11.
We have employed a site-directed photochemical cross-linking procedure to precisely map interactions between nucleosomal DNA and the C-terminal tail of core histone H2A. We find that this tail has the potential to contact multiple sites within the nucleosome and that these contacts are dependent upon the configuration of the complex. This tail contacts DNA near the dyad axis within nucleosome core particles but rearranges to a site near the edge of the nucleosomal DNA when linker DNA is present. Moreover, in the presence of linker histone H1 the contacts near the edge of the nucleosome but not at the dyad are further rearranged. In addition, we present further evidence for the suggestion that the binding of linker histone causes a subtle but global change in core histone-DNA interactions within the nucleosome [Usachenko, S. I., Gavin, I. M., and Bavykin, S. G. (1996) J. Biol. Chem. 271, 3831-3836].  相似文献   

12.
We report the characterization of an in vitro chromatin assembly system derived from Artemia embryos and its application to the study of AluI-113 satellite DNA organization in nucleosomes. The system efficiently reconstitutes chromatin templates by associating DNA, core histones, and H1. The polynucleosomal complexes show physiological spacing of repeat length 190 +/- 5 base pairs, and the internucleosomal distances are modulated by energy-using activities that contribute to the dynamics of chromatin conformation. The assembly extract was used to reconstitute tandemly repeated AluI-113 sequences. The establishment of preferred histone octamer/satellite DNA interactions was observed. In vitro, AluI-113 elements dictated the same nucleosome translational localizations as found in vivo. Specific rotational constraints seem to be the central structural requirement for nucleosome association. Satellite dinucleosomes showed decreased translational mobility compared with mononucleosomes. This could be the consequence of interactions between rotationally positioned nucleosomes separated by linker DNA of uniform length. AluI-113 DNA led to weak cooperativity of nucleosome association in the proximal flanking regions, which decreased with distance. Moreover, the structural properties of satellite chromatin can spread, thus leading to a specific organization of adjacent nucleosomes.  相似文献   

13.
The affinity of a DNA sequence for the histone octamer in a core nucleosome depends on the intrinsic flexibility of the DNA. This parameter can be affected both by the sequence-dependent conformational preferences of individual base steps and by the nature and location of the exocyclic groups of the DNA bases. By adopting highly preferred conformations particular types of base step can influence the rotational positioning of the DNA on the surface of the histone octamer. The asymmetry of the next higher order of chromatin structure is determined in part by the asymmetric binding of the globular domain of histone H5 to the core nucleosome.  相似文献   

14.
A sulfhydryl-specific fluorescent probe, N-3-pyrene maleimide, has been shown to label with high efficiency the sulfhydryl groups of histone H3 in nonsheared chromatin. The probe labels chromatin preparations obtained by mild homogenization or nuclease treatment of rat liver and mouse thymocyte, but not chick erythrocyte nuclei. Mononucleosomes from all nuclear preparations are labeled by the probe. The reaction is inhibited by prior reaction of the chromatin with N-ethyl maleimide. The reaction kinetics show fast and slow components representing reactions with cysteinyl sulfhydryl groups and lysyl epsilon-amino groups, respectively. Dissociation of the chromatin by urea (6 M) or sodium dodecyl sulfate (SDS) increases the fluorescence intensity (2-3 fold) and is maximal at approx. 0.01-0.02% (w/v) SDS. Histones extracted from the labelled chromatin show that approx. 80-90% of the label is associated with the histone fraction and column chromatography of this fraction shows that the label is primarily associated with histone H3. Labelling of the isolated histone fractions shows significant labelling only of histone H3. The intrinsic fluorescence of tryptophan is quenched by the labelled histone H3, but not by iodide, suggesting that non-histone (tryptophan-containing) proteins lie in close proximity to the labelled histone H3 but are not immediately accessible to external solvent. The labelled chromatin exhibits fluorescence anistropy, the anistropy parameter being 0.19 +/- 0.003 for chromatin, 0.05 +/- 0.01 for mononucleosomes and 0.0 for isolated histone H3. This demonstrates the restriction placed on the label's mobility by the chromatin fiber. The formation of a superhelix at 60-100 mM NaCl has been monitored with the probe. An increase in fluorescence intensity at 80 mM NaCl is observed with intact chromatin (but not H-1 depleted chromatin) followed by dissociation of the octamer in 1.50-2.0 M salt accompanied by a large increase in labelling.  相似文献   

15.
16.
Using zero-length covalent protein-DNA crosslinking, we have mapped the histone-DNA contacts in nucleosome core particles from which the C- and N-terminal domains of histone H2A were selectively trimmed by trypsin or clostripain. We found that the flexible trypsin-sensitive C-terminal domain of histone H2A contacts the dyad axis, whereas its globular domain contacts the end of DNA in the nucleosome core particle. The appearance of the histone H2A contact at the dyad axis occurs only in the absence of linker DNA and does not depend on the absence of linker histones. Our results show the ability of the histone H2A C-terminal domain to rearrange. This rearrangement might play a biological role in nucleosome disassembly and reassembly and the retention of the H2A-H2B dimer (or the whole octamer) during the passing of polymerases through the nucleosome.  相似文献   

17.
In avian erythroid cells the erythrocyte-specific histone H5 is involved, like H1, in the packing of nucleosomes in the 25-nm chromatin fibers. In this study the distribution of histone H5 along the polynucleosomal chains was visualized by immunoelectron microscopy. Trinucleosomes from chicken erythrocytes and liver were used in order to test the specificity of the reaction with purified rabbit anti-H5 antibodies at various ionic strengths (5-80 mM). Long-chain chromatin was then reacted with anti-H5 antibodies and with sorted monomeric ferritin conjugate under chosen conditions. The antigenic determinants of histone H5 in the 25-nm fiber of long-chain chromatin (at 80 mM NaCl) are as accessible to the specific antibodies as in trinucleosomes. When the immunocomplexes were examined by electron microscopy in a low-ionic-strength buffer, permitting maximum extension of the chromatin structure on the grid, clusters of compacted nucleosomes were seen, separated by short regions of relaxed nucleosomes. Single nucleosomes enlarged by the antibodies are sometimes visible in the extended domains. We conclude that histone H5 is located primarily on series of adjacent nucleosomes but it can also be found on single nucleosomes located in the H1-enriched extended domains.  相似文献   

18.
The rates of the individual steps in the disulfide-coupled folding and unfolding of eight BPTI variants, each containing a single aromatic to leucine amino acid replacement, were measured. From this analysis, the contributions of the four phenylalanine and four tyrosine residues to the stabilities of the native protein and the disulfide-bonded folding intermediates were determined. While the substitutions were found to destabilize the native protein by 2 to 7 kcal/mol, they had significantly smaller effects on the intermediates that represent the earlier stages of folding, even when the site of the substitution was located within the ordered regions of the intermediates. These results suggest that stabilizing interactions contribute less to conformational stability in the context of a partially folded intermediate than in a fully folded native protein, perhaps because of decreased cooperativity among the individual interactions. The kinetic analysis also provides new information about the transition states associated with the slowest steps in folding and unfolding, supporting previous suggestions that these transition states are extensively unfolded. Although the substitutions caused large changes in the distribution of folding intermediates and in the rates of some steps in the folding pathway, the kinetically-preferred pathway for all of the variants involved intramolecular disulfide rearrangements, as observed previously for the wild-type protein. These results suggest that the predominance of the rearrangement mechanism reflects conformational constraints present relatively early in the folding pathway.  相似文献   

19.
We investigated the evolutionary history of the divergent vertebrate linker histones H1 zero, H5, and H1M. We observed that the sequence of the central conserved domain of these vertebrate proteins shares characteristic features with histone H1 proteins of plants and invertebrate animals which otherwise never appear in any vertebrate histone H1 protein. A quantitative analysis of 58 linker histone sequences also reveals that these proteins are more similar to invertebrate and plant histone H1 than to histone H1 of vertebrates. A phylogenetic tree deduced from an alignment of the central domain of all known linker histones places H1 zero, H5, and H1M in close vicinity to invertebrate sperm histone H1 proteins and to invertebrate histone H1 proteins encoded by polyadenylated mRNAs. We therefore conclude that the ancestors of the vertebrate linker histones H1 zero, H5, and H1M diverged from the main group of histone H1 proteins before the vertebrate type of histone H1 was established in evolution. We discuss this observation in the general context of linker histone evolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号