首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2-Ketocyclohexanecarboxyl coenzyme A (2-ketochc-CoA) hydrolase has been proposed to catalyze an unusual hydrolytic ring cleavage reaction as the last unique step in the pathway of anaerobic benzoate degradation by bacteria. This enzyme was purified from the phototrophic bacterium Rhodopseudomonas palustris by sequential Q-Sepharose, phenyl-Sepharose, gel filtration, and hydroxyapatite chromatography. The sequence of the 25 N-terminal amino acids of the purified hydrolase was identical to the deduced amino acid sequence of the badI gene, which is located in a cluster of genes involved in anaerobic degradation of aromatic acids. The deduced amino acid sequence of badI indicates that 2-ketochc-CoA hydrolase is a member of the crotonase superfamily of proteins. Purified BadI had a molecular mass of 35 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a native molecular mass of 134 kDa as determined by gel filtration. This indicates that the native form of the enzyme is a homotetramer. The purified enzyme was insensitive to oxygen and catalyzed the hydration of 2-ketochc-CoA to yield pimelyl-CoA with a specific activity of 9.7 micromol min(-1) mg of protein(-1). Immunoblot analysis using polyclonal antiserum raised against the purified hydrolase showed that the synthesis of BadI is induced by growth on benzoate and other proposed benzoate pathway intermediates but not by growth on pimelate or succinate. An R. palustris mutant, carrying a chromosomal disruption of badI, did not grow with benzoate and other proposed benzoate pathway intermediates but had wild-type doubling times on pimelate and succinate. These data demonstrate that BadI, the 2-ketochc-CoA hydrolase, is essential for anaerobic benzoate metabolism by R. palustris.  相似文献   

2.
A NAD-dependent enzyme that catalyzes the oxidation of retinal to retinoic acid has been purified to homogeneity from bovine kidney. The procedures used in the purification included ion-exchange chromatography on DEAE-Sepharose, affinity chromatography on Affi-gel blue and chromatography on a Mono-Q anion-exchange column. On the Mono-Q column, the enzyme aldehyde dehydrogenase (ALDH) resolved into two activity peaks designated as ALDH1 and ALDH2. The enzymes ALDH1 and ALDH2 were purified about 114- and 65-fold, respectively. Gel filtration chromatography of the partially purified native enzyme on Sephacryl S-200 HR exhibited a molecular mass of about 108 kDa. Electrophoresis of the purified enzymes under nondenaturing conditions showed a single protein band. However, sodium dodecyl sulfate--polyacrylamide gel electrophorsis indicated three protein bands in the 55, 30, and 22 kDa molecular mass regions. Both enzymes exhibited a broad substrate specificity oxidizing a wide variety of aliphatic and aromatic aldehydes. The ALDH1 enzyme had a pI of 7.45 and exhibited a low Km (6.37 microM) for retinal, while the ALDH2 enzyme was found to have very low Km for acetaldehyde (0.98 microM). Based on its kinetic properties, it is suggested that the ALDH1 enzyme may be the primary enzyme for oxidizing retinal to retinoic acid in bovine kidney.  相似文献   

3.
The cenC gene, encoding beta-1,4-glucanase C (CenC) from Cellulomonas fimi, was overexpressed in Escherichia coli with a tac-based expression vector. The resulting polypeptide, with an apparent molecular mass of 130 kDa, was purified from the cell extracts by affinity chromatography on cellulose followed by anion-exchange chromatography. N-terminal sequence analysis showed the enzyme to be properly processed. Mature CenC was optimally active at pH 5.0 and 45 degrees C. The enzyme was extremely active on soluble, fluorophoric, and chromophoric glycosides (4-methylumbelliferyl beta-glycosides, 2'-chloro-4'-nitrophenyl-beta-D-cellobioside, and 2'-chloro-4'-nitrophenyl-lactoside) and efficiently hydrolyzed carboxymethyl cellulose, barley beta-glucan, lichenan, and, to a lesser extent, glucomannan. CenC also hydrolyzed acid-swollen cellulose, Avicel, and bacterial microcrystalline cellulose. However, degradation of the latter was slow compared with its degradation by CenB, another C. fimi cellulose belonging to the same enzyme family. CenC acted with inversion of configuration at the anomeric carbon, in accordance with its classification as a family 9 member. The enzyme released mainly cellobiose from soluble cellodextrins and insoluble cellulose. Attack appeared to be from the reducing chain ends. Analysis of carboxymethyl cellulose hydrolysis suggests that CenC is semiprocessive enzyme with both endo- and exoglucanase activities.  相似文献   

4.
Triacylglycerol lipase (L3) was purified from Aspergillus oryzae RIB128 by ammonium sulfate fractionation, acetone precipitation, anion-exchange chromatography, and gel filtration. The purified enzyme was formed from a glycoprotein and a monomeric protein with molecular masses of 25 and 29 kDa, by SDS-PAGE and gel filtration, respectively. The optimum pH at 40 degrees C was 5.5 and the optimum temperature at pH 5.5 was 40 degrees C. The enzyme was stable between a pH range of 4.0-7.5 at 30 degrees C for 24 h, and at up to 30 degrees C at pH 5.5 for 1 h. Heavy metal ions, detergents, DFP, and DEP strongly inhibited the enzyme activity. The lipase hydrolyzed not only triacylglycerols but also monoacylglycerols and diacylglycerols. The enzyme had higher specificity toward triacylglycerols of middle-chain saturated fatty acids than short-chain or long-chain fatty acids. The enzyme had 1,3-positional specificity. The N-terminal amino acid sequence of the enzyme was not significantly similar to that of other lipases with published sequences.  相似文献   

5.
A highly purified preparation of alpha-D-galactosidase [E.C. 3.2.1.22] isozymes was obtained from Phaseolus vulgaris (pinto bean) seeds by extraction, salt precipitation, ion exchange, and affinity chromatography. The final preparation was homogeneous by SDS-PAGE but revealed isozymes of relative mass of 38.3 and 39.6 kDa. The N-terminal sequence for both isozymes was identical, LANGLAKT (one letter code for amino acids). Relative native molecular mass was estimated at 149.3 kDa by Sephacryl S-200 chromatography. Activity was unaffected by ionic strength at high enzyme concentrations, and was specific for alpha-D-galactoside conjugates. No protease or hemagglutinin activity was detected, and activity was stable at 4 degrees C. Studies with soluble oligosaccharides demonstrated high activity against the selected straight and branched-chain substrates. The enzyme was active against terminal alpha 1-3 galactosyl residues on human and rabbit erythrocyte membranes. Because of its activity against membrane glycoconjugates, these isozymes may have potential utility for modifying membrane epitopes on native erythrocytes.  相似文献   

6.
beta-Citryl-L-glutamate-hydrolysing enzyme (beta-CGHE) was purified from rat testis particulate fraction 13,000-fold, at a yield of 7%. The enzyme was purified by ammonium sulfate fractionation, hydroxyapatite, chelating Sepharose, beta-CG-Sepharose affinity chromatography and Sephacryl S-300 gel filtration. The purified enzyme usually migrated as two periodic acid Schiff's-stained bands on native polyacrylamide gel-electrophoresis (PAGE) with molecular weights of 350 and 420 kDa. Both bands hydrolyzed beta-citryl-L-glutamate (beta-CG) to citrate and glutamate. The 420 kDa band was changed by digestion with N-glycosidase F, into a 350 kDa band on native PAGE. The purified enzyme was composed of 90, 100, 115 and 130 kDa subunits on SDS-PAGE under non-reduced conditions. The purified enzyme was pharmacologically similar to the beta-CGHE activity partially purified from rat testis. This enzyme required manganese ions for full activity and it was strongly inhibited by nucleotides such as ATP or GTP and phosphate ions. beta-CGHE was also potently inhibited by an excitatory amino acid agonist, L-quisqualate, but not by another agonists, N-methyl-D-aspartate and kinate. It had high substrate specificity for beta-CG. The antibodies against the purified enzyme reacted mainly to the 115 kDa band on the SDS-PAGE and precipitated the enzyme activity from the crude and purified enzyme solution.  相似文献   

7.
HSL from chicken adipose tissue exhibits remarkable activation upon phosphorylation with cAMP-dependent protein kinase (cAMP-PK) compared to HSL from rat and human adipose tissue. In order to characterize the chicken HSL enzyme, it was purified 3500 fold from a chicken adipose tissue homogenate using pH 5.2 precipitation and anion-exchange chromatography. The purified chicken HSL was identified as an 86 kDa protein using Western blot analysis. The HSL diacylglycerol lipase activity was inhibited by 98% upon incubation with anti-rat HSL antiserum, and the specific activity of chicken HSL was estimated to be approximately the same as for the rat enzyme. Furthermore, the 86 kDa polypeptide was phosphorylated by cAMP-PK to about the same stoichiometry as for the recombinant rat enzyme. Hence, our results demonstrate that HSL from chicken adipose tissue is comparable in size and specific activity to HSL from mammalian species, and not a smaller 42 kDa polypeptide with 1000-fold lower specific activity as previously reported (Berglund, L., Khoo, J. C., Jensen, D., and Steinberg, D., 1980 J. Biol. Chem. 255, 5420-5428).  相似文献   

8.
Chaetomium thermophilium was isolated from composting municipal solid waste during the thermophilic stage of the process. C. thermophilium, a cellulolytic fungus, exhibited laccase activity when it was grown at 45 degreesC both in solid media and in liquid media. Laccase activity reached a peak after 24 h in liquid shake culture. Laccase was purified by ultrafiltration, anion-exchange chromatography, and affinity chromatography. The purified enzyme was identified as a glycoprotein with a molecular mass of 77 kDa and an isoelectric point of 5.1. The laccase was stable for 1 h at 70 degreesC and had half-lives of 24 and 12 h at 40 and 50 degreesC, respectively. The enzyme was stable at pH 5 to 10, and the optimum pH for enzyme activity was 6. The purified laccase efficiently catalyzed a wide range of phenolic substrates but not tyrosine. The highest levels of affinity were the levels of affinity to syringaldazine and hydroxyquinone. The UV-visible light spectrum of the purified laccase had a peak at 604 nm (i.e., Cu type I), and the activity was strongly inhibited by Cu-chelating agents. When the hydrophobic acid fraction (the humic fraction of the water-soluble organic matter obtained from municipal solid waste compost) was added to a reaction assay mixture containing laccase and guaiacol, polymerization took place and a soluble polymer was formed. C. thermophilium laccase, which is produced during the thermophilic stage of composting, can remain active for a long period of time at high temperatures and alkaline pH values, and we suggest that this enzyme is involved in the humification process during composting.  相似文献   

9.
With the goal to obtain maltose phosphorylase as a tool to determine ortho-phosphate, the enzyme from Lactobacillus brevis was purified to 98% by an expeditious FPLC-aided procedure which included anion exchange chromatography, gel filtration, and hydroxyapatite chromatography. The native maltose phosphorylase had a molecular mass of 196 kDa and consisted of two 88 kDa subunits. In isoelectric focusing two isoforms with pI values of 4.2 and 4.6 were observed. Maximum enzyme activity was obtained at 36 degrees C and pH 6.5 and was independent of pyridoxal 5'-phosphate. The apparent K(m) values with maltose and phosphate as substrates were 0.9 mmol l-1 and 1.8 mmol l-1, respectively. Maltose phosphorylase could be stored in 10 mM phosphate buffer pH 6.5 at 4 degrees C with a loss of activity of only 7% up to 6 months. The stability of the enzyme at high temperatures was enhanced significantly using additives like phosphate, citrate, and imidazole. The purified maltose phosphorylase was used as key enzyme in a phosphate sensor consisting of maltose phosphorylase and glucose oxidase. A detection limit of 0.1 microM phosphate was observed and the sensor response was linear in the range between 0.5 and 10 microM.  相似文献   

10.
Cysteine proteinases expressed by schistosomes appear to play key roles in the digestion of host hemoglobin, the principal source of amino acid nutrients utilized by these parasites. We have shown previously that the predominant cysteine proteinase activity in soluble extracts and excretory/secretory (ES) products of adults of Schistosoma mansoni and S. japonicum is cathepsin L-like in its substrate specificity. However, biochemical analysis of the cathepsin L activity in extracts and ES products of schistosomes has been complicated by the presence of at least two distinct forms of schistosome cathepsin L, termed SmCL1 and SmCL2. We now report the purification and enzyme characteristics of active, recombinant SmCL1 which was obtained by transforming Saccharomyces cerevisiae with an expression plasmid encoding the preproenzyme of SmCL1. Recombinant SmCL1 was secreted by the transformed yeast into the culture media from which it was purified by gel filtration and ion-exchange chromatography. The purified enzyme exhibited substrate specificity against synthetic peptidyl substrates (e.g., Boc-Val-Leu-Lys-NHMec and Z-Phe-Arg-NHMec; kcat/Km = 17.25 and 6.24 mM-1 s-1, respectively) and against gelatin and hemoglobin, characteristic of cathepsin L. Immunoblot analysis using antiserum raised against recombinant SmCL1 demonstrated that native SmCL1 of 33 kDa was present in ES products and soluble extracts of S. mansoni. Using this antiserum and thin tissue sections, we localized the native SmCL1 to the gastrodermis and to the tegument of adult schistosomes. Recombinant SmCL1 was capable of degrading human hemoglobin at pH 4.0 to 4.5 but not higher, suggesting that denaturation of hemoglobin by low pH, as found in the cecum of the adult schistosome, may be necessary for its catalysis by cathepsin L and other gut-associated proteinases. Together, these results support a role for SmCL1 in the degradation of host hemoglobin within the gut of the schistosome.  相似文献   

11.
The high-molar mass form of beta-glucosidase from Aspergillus niger strain NIAB280 was purified to homogeneity with a 46-fold increase in purification by a combination of ammonium sulfate precipitation, hydrophobic interaction, ion-exchange and gel-filtration chromatography. The native and subunit molar mass was 330 and 110 kDa, respectively. The pH and temperature optima were 4.6-5.3 and 70 degrees C, respectively. The K(m) and kcat for 4-nitrophenyl beta-D-glucopyranoside at 40 degrees C and pH 5 were 1.11 mmol/L and 4000/min, respectively. The enzyme was activated by low and inhibited by high concentrations of NaCl. Ammonium sulfate inhibited the enzyme. Thermolysin periodically inhibited and activated the enzyme during the course of reaction and after 150 min of proteinase treatment only 10% activity was lost with concomitant degradation of the enzyme into ten low-molar-mass active bands. When subjected to 0-9 mol/L transverse urea-gradient-PAGE for 105 min at 12 degrees C, the nonpurified beta-glucosidase showed two major bands which denatured at 4 and 8 mol/L urea, respectively, with half-lives of 73 min.  相似文献   

12.
Stable BHK-21 cell lines were constructed expressing the Golgi membrane-bound form and two secretory forms of the human alpha1, 3/4-fucosyltransferase (amino acids 35-361 and 46-361). It was found that 40% of the enzyme activity synthesized by cells transfected with the Golgi form of the fucosyltransferase was constitutively secreted into the medium. The corresponding enzyme detected by Western blot had an apparent molecular mass similar to those of the truncated secretory forms. The secretory variant (amino acids 46-361) was purified by a single affinity-chromatography step on GDP-Fractogel resin with a 20% final recovery. The purified enzyme had a unique NH2 terminus and contained N-linked endo H sensitive carbohydrate chains at its two glycosylation sites. The fucosyltransferase transferred fucose to the O-4 position of GlcNAc in small oligosaccharides, glycolipids, glycopeptides, and glycoproteins containing the type I Galbeta1-3GlcNAc motif. The acceptor oligosaccharide in bovine asialofetuin was identified as the Man-3 branched triantennary isomer with one Galbeta1-3GlcNAc. The type II motif Galbeta1-4GlcNAc in bi-, tri-, or tetraantennary neutral or alpha2-3/alpha2-6 sialylated oligosaccharides with or without N-acetyllactosamine repeats and in native glycoproteins were not modified. The soluble forms of fucosyltransferase III secreted by stably transfected cells may be used for in vitro synthesis of the Lewisa determinant on carbohydrates and glycoproteins, whereas Lewisx and sialyl-Lewisx structures cannot be synthesized.  相似文献   

13.
A color-variant strain of Aureobasidium pullulans (NRRL Y-12974) produced alpha-L-arabinofuranosidase (alpha-L-AFase) when grown in liquid culture on oat spelt xylan. An extracellular alpha-L-AFase was purified 215-fold to homogeneity from the culture supernatant by ammonium sulfate treatment, DEAE Bio-Gel A agarose column chromatography, gel filtration on a Bio-Gel A-0.5m column, arabinan-Sepharose 6B affinity chromatography, and SP-Sephadex C-50 column chromatography. The purified enzyme had a native molecular weight of 210,000 and was composed of two equal subunits. It had a half-life of 8 h at 75 degrees C, displayed optimal activity at 75 degrees C and pH 4.0 to 4.5, and had a specific activity of 21.48 mumol min-1. mg-1 of protein against p-nitrophenyl-alpha-L-arabinofuranoside (pNP alpha AF). The purified alpha-L-AFase readily hydrolyzed arabinan and debranched arabinan and released arabinose from arabinoxylans but was inactive against arabinogalactan. The K(m) values of the enzyme for the hydrolysis of pNP alpha AF, arabinan, and debranched arabinan at 75 degrees C and pH 4.5 were 0.26 mM, 2.14 mg/ml, and 3.25 mg/ml, respectively. The alpha-L-AFase activity was not inhibited at all by L-arabinose (1.2 M). The enzyme did not require a metal ion for activity, and its activity was not affected by p-chloromercuribenzoate (0.2 mM), EDTA (10 mM), or dithiothreitol (10 mM).  相似文献   

14.
beta-N-Acetylhexosaminidase was purified from the extract of cabbage by sequential steps of ammonium sulfate fractionation, chromatofocusing, DEAE-Sepharose CL-6B ion exchange chromatography and Sephacryl S-200 HR gel filtration. By these steps, the purity of the enzyme increased by 256 fold with a recovery of 8%. The purified enzyme was homogeneous as examined by native PAGE. It showed an optimal pH of 4, an optimal temperature of 60 degrees C and a Km of 0.94 mM for hydrolysis of pNp-beta-GlcNAc. The molecular mass of the enzyme determined from filtration through Sephacryl S-200 was 150 kDa. Three subunits with molecular mass of 64, 57 and 51 kDa were observed as determined by SDS-PAGE. NBS (0.025 mM), DEPC (3 mM) and WRK (30 mM) significantly inhibited the activity of the enzyme. The enzyme also showed activity toward pNp-beta-GalNAc, N,N'-diacetylchitobiose, N,N',N"-triacetylchitotriose and N,N',N",N"'-tetraacetyl chitotetraose but showed no activity toward pNp-alpha-GlcNAc, chitin and ethylene glycol chitin.  相似文献   

15.
Two exo-beta-1,3-glucanases (herein designated exoG-I and exoG-II) were isolated from the cell wall autolysate of the filamentous fungus Aspergillus fumigatus and purified by ion-exchange, hydrophobic-interaction, and gel filtration chromatographies. Molecular masses estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography were 82 kDa for the monomeric exoG-I and 230 kDa for the dimeric exoG-II. exoG-I and exoG-II were glycosylated, and N glycans accounted, respectively, for 2 and 44 kDa. Their pH optimum is 5.0. Their optimum temperatures are 55 degrees C for exoG-I and 65 degrees C for exoG-II. By a sensitive colorimetric method and high-performance anion-exchange chromatography for product analysis, two patterns of exo-beta-1,3-glucanase activities were found. The 230-kDa exoG-II enzyme acts on p-nitrophenyl-beta-D-glucoside, beta-1,6-glucan, and beta-1,3-glucan. This activity, which retains the anomeric configuration of glucose released, presented a multichain pattern of attack of the glucan chains and a decrease in the maximum initial velocity (Vm) with the increasing size of the substrate. In contrast, the 82-kDa exoG-I, which inverts the anomeric configuration of the glucose released, hydrolyzed exclusively the beta-1,3-glucan chain with a minimal substrate size of 4 glucose residues. This enzyme presented a repetitive-attack pattern, characterized by an increase in Vm with an increase in substrate size and by a degradation of the glucan chain until it reached laminaritetraose, the limit substrate size. The 82-kDa exoG-I and 230-kDa exoG-II enzymes correspond to a beta-1,3-glucan-glucohydrolase (EC 3.2.1.58) and to a beta-D-glucoside-glucohydrolase (EC 3.2.1.21), respectively. The occurrence and functions of these two classes of exo-beta-1,3-glucanases in other fungal species are discussed.  相似文献   

16.
The esterases from the cell-free extracts (CFEs) of Aspergillus parasiticus ATCC15517, an aflatoxin-producing strain, catalyzing the hydrolytic conversion of versiconal hemiacetal acetate (VHA) to versiconal was biochemically studied. The specific activity of the enzymes increased 2.5-fold during incubation of mycelia through 40-55 h. No metal ions were required for enzyme stability, but EDTA at 1 mM and dithiothreitol at 0.5-5 mM increased its stability. Three peaks of VHA esterase activity were resolved when the proteins in the CFEs prepared from the mycelia of different ages were separated by anion-exchange column chromatography, suggesting that at least three VHA esterases were present in the eluate of this purification step. One of these esterases extracted from the mycelia of a 55-h culture was partially purified in five steps by means of preparative chromatography and fast protein liquid chromatography. The partially purified enzyme when reacted with [14C]diisopropylfluorophosphate followed by sodium dodecyl sulfate - polyacrylamide gel electrophoresis gave a single radiolabelled band, which corresponded to a protein of 32 kDa. The molecular mass of the partially purified VHA esterase determined with gel filtration was around 60 kDa. The results suggested that the enzyme consists of two isomeric subunits.  相似文献   

17.
Rhodococcus rhodochrous N75 is able to metabolize 4-methylcatechol via a modified beta-ketoadipate pathway. This organism has been shown to activate 3-methylmuconolactone by the addition of coenzyme A (CoA) prior to hydrolysis of the butenolide ring. A lactone-CoA synthetase is induced by growth of R. rhodochrous N75 on p-toluate as a sole source of carbon. The enzyme has been purified 221-fold by ammonium sulfate fractionation, hydrophobic chromatography, gel filtration, and anion-exchange chromatography. The enzyme, termed 3-methylmuconolactone-CoA synthetase, has a pH optimum of 8.0, a native Mr of 128,000, and a subunit Mr of 62,000, suggesting that the enzyme is homodimeric. The enzyme is very specific for its 3-methylmuconolactone substrate and displays little or no activity with other monoene and diene lactone analogues. Equimolar amounts of these lactone analogues brought about less than 30% (most brought about less than 15%) inhibition of the CoA synthetase reaction with its natural substrate.  相似文献   

18.
Pseudomonas pseudoalcaligenes JS45 grows on nitrobenzene as a sole source of carbon, nitrogen, and energy. The catabolic pathway involves reduction to hydroxylaminobenzene followed by rearrangement to o-amino-phenol and ring fission (S. F. Nishino and J. C. Spain, Appl. Environ. Microbiol. 59:2520, 1993). A nitrobenzene-inducible, oxygen-insensitive nitroreductase was purified from extracts of JS45 by ammonium sulfate precipitation followed by anion-exchange and gel filtration chromatography. A single 33-kDa polypeptide was detected by denaturing gel electrophoresis. The size of the native protein was estimated to be 30 kDa by gel filtration. The enzyme is a flavoprotein with a tightly bound flavin mononucleotide cofactor in a ratio of 2 mol of flavin per mol of protein. The Km for nitrobenzene is 5 microM at an initial NADPH concentration of 0.5 mM. The Km for NADPH at an initial nitrobenzene concentration of 0.1 mM is 183 microM. Nitrosobenzene was not detected as an intermediate of nitrobenzene reduction, but nitrosobenzene is a substrate for the enzyme, and the specific activity for nitrosobenzene is higher than that for nitrobenzene. These results suggest that nitrosobenzene is formed but is immediately reduced to hydroxylaminobenzene. Hydroxylaminobenzene was the only product detected after incubation of the purified enzyme with nitrobenzene and NADPH. Hydroxylaminobenzene does not serve as a substrate for further reduction by this enzyme. The products and intermediates are consistent with two two-electron reductions of the parent compound. Furthermore, the low Km and the inducible control of enzyme synthesis suggest that nitrobenzene is the physiological substrate for this enzyme.  相似文献   

19.
The first purification of mouse extracellular superoxide dismutase (EC-SOD) and the analysis of the native enzyme are described. Mouse EC-SOD was purified from lung tissues with a high recovery (41%) and a specific polyclonal antibody against the purified enzyme was obtained. The purified enzyme had a strong affinity for, heparin and a molecular mass of 150 kDa (estimated by a gel filtration chromatography). The native mouse EC-SOD was composed of two different sizes of subunits, a M(r) of 33 and 35 kDa (determined by SDS-PAGE). The 35-kDa subunit had an interchain disulfide bond at the C-terminus and existed as a covalent dimer in the molecule, whereas the 33-kDa subunit resulted from the 35-kDa subunit by truncating its C-terminus as a posttranslational modification, with resultant loss of the interchain disulfide bond. These results suggest that the native mouse EC-SOD is a heterotetramer composed of two different dimers, with or without a covalent bond.  相似文献   

20.
2-Aminonumconic 6-semialdehyde is an unstable intermediate in the biodegradation of nitrobenzene and 2-aminophenol by Pseudomonas pseudoalcaligenes JS45. Previous work has shown that enzymes in cell extracts convert 2-aminophenol to 2-aminomuconate in the presence of NAD+. In the present work, 2-aminomuconic semialdehyde dehydrogenase was purified and characterized. The purified enzyme migrates as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular mass of 57 kDa. The molecular mass of the native enzyme was estimated to be 160 kDa by gel filtration chromatography. The optimal pH for the enzyme activity was 7.3. The enzyme is able to oxidize several aldehyde analogs, including 2-hydroxymuconic semialdehyde, hexaldehyde, and benzaldehyde. The gene encoding 2-aminomuconic semialdehyde dehydrogenase was identified by matching the deduced N-terminal amino acid sequence of the gene with the first 21 amino acids of the purified protein. Multiple sequence alignment of various semialdehyde dehydrogenase protein sequences indicates that 2-aminomuconic 6-semialdehyde dehydrogenase has a high degree of identity with 2-hydroxymuconic 6-semialdehyde dehydrogenases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号