共查询到20条相似文献,搜索用时 15 毫秒
1.
Sang-Ki Kim Author VitaeAuthor Vitae Kar-Ann Toh Author Vitae Author Vitae 《Pattern recognition》2010,43(8):2871-2881
The primary goal of linear discriminant analysis (LDA) in face feature extraction is to find an effective subspace for identity discrimination. The introduction of kernel trick has extended the LDA to nonlinear decision hypersurface. However, there remained inherent limitations for the nonlinear LDA to deal with physical applications under complex environmental factors. These limitations include the use of a common covariance function among each class, and the limited dimensionality inherent to the definition of the between-class scatter. Since these problems are inherently caused by the definition of the Fisher's criterion itself, they may not be solvable under the conventional LDA framework. This paper proposes to adopt a margin-based between-class scatter and a regularization process to resolve the issue. Essentially, we redesign the between-class scatter matrix based on the SVM margins to facilitate an effective and reliable feature extraction. This is followed by a regularization of the within-class scatter matrix. Extensive empirical experiments are performed to compare the proposed method with several other variants of the LDA method using the FERET, AR, and CMU-PIE databases. 相似文献
2.
This paper proposes a novel method for recognizing facial images based on the relative distances between an input image and example images. Example facial images can be easily collected online, and a large example database can span new possible facial variations not sufficiently learned during the learning phase. We first extract facial features using a baseline classifier that has a certain degree of accuracy. To achieve a better performance of the proposed method, we divide the collected examples into groups using a clustering method (e.g., k-means), where each clustered group contains examples with similar characteristics. We then hierarchically partition a group formed in the previous level into other groups to analyze more specific facial characteristics, which represent an example pyramid. To describe the characteristics of a group using the clustered examples, we divide the example group into a number of sub-groups. We calculate the averages of the sub-groups and select an example most similar to the average in each sub-group because we assume that the averages of the sub-groups can directly represent their characteristics. Using the selected examples, we build example code words for a novel feature extraction. The example code words are used to measure the distances to an input image and serve as anchors to analyze a facial image in the example domain. The distance values are normalized for each group at all pyramid levels, and are concatenated to form novel features for face recognition. We verified the effectiveness of the proposed example pyramid framework using well-known proposed features, including LBP, HOG, Gabor, and the deep learning method, on the LFW database, and showed that it can yield significant improvements in recognition performance. 相似文献
3.
Eduardo Rodriguez Konstantinos Nikolaidis Tingting Mu Jason F. Ralph John Y. Goulermas 《Natural computing》2012,11(3):395-404
Principal components analysis has become a popular preprocessing method to avoid the small sample size problem for most of the supervised graph embedding methods. Nevertheless, there is potential loss of relevant information when projecting the data onto the space defined by the principal Eigenfaces when the number of individuals in the gallery is large. This paper introduces a new collaborative feature extraction method based on projection pursuit, as a robust preprocessing for supervised embedding methods. A previously proposed projection index was adopted as a measure of interestingness, based on a weighted sum of six state of the art indices. We compare our collaborative feature extraction technique against principal component analysis as preprocessing stage for Laplacianfaces. For completeness, results for Eigenfaces and Fisherfaces are included. Experimental results to demonstrate the robustness of our approach against changes in facial expression and lighting are presented. 相似文献
4.
新的非线性鉴别特征抽取方法及人脸识别 总被引:1,自引:0,他引:1
在非线性空间中采用新的最大散度差鉴别准则,提出了一种新的核最大散度差鉴别分析方法.该方法不仅有效地抽取了人脸图像的非线性鉴别特征,而且从根本上避免了以往核Fisher鉴别分析中训练样本总数较多时,通常存在的核散布矩阵奇异的问题,计算复杂度大大降低,识别速度有了明显的提高.在ORL人脸数据库上的实验结果验证了该算法的有效性. 相似文献
5.
In this paper, we propose a new feature extraction method for feedforward neural networks. The method is based on the recently published decision boundary feature extraction algorithm which is based on the fact that all the necessary features for classification can be extracted from the decision boundary. The decision boundary feature extraction algorithm can take advantage of characteristics of neural networks which can solve complex problems with arbitrary decision boundaries without assuming underlying probability distribution functions of the data. To apply the decision boundary feature extraction method, we first give a specific definition for the decision boundary in a neural network. Then, we propose a procedure for extracting all the necessary features for classification from the decision boundary. Experiments show promising results. 相似文献
6.
Shared feature extraction for nearest neighbor face recognition. 总被引:1,自引:0,他引:1
In this paper, we propose a new supervised linear feature extraction technique for multiclass classification problems that is specially suited to the nearest neighbor classifier (NN). The problem of finding the optimal linear projection matrix is defined as a classification problem and the Adaboost algorithm is used to compute it in an iterative way. This strategy allows the introduction of a multitask learning (MTL) criterion in the method and results in a solution that makes no assumptions about the data distribution and that is specially appropriated to solve the small sample size problem. The performance of the method is illustrated by an application to the face recognition problem. The experiments show that the representation obtained following the multitask approach improves the classic feature extraction algorithms when using the NN classifier, especially when we have a few examples from each class. 相似文献
7.
Human facial feature extraction for face interpretation and recognition 总被引:16,自引:0,他引:16
Facial features' extraction algorithms which can be used for automated visual interpretation and recognition of human faces are presented. Here, we can capture the contours of the eye and mouth by a deformable template model because of their analytically describable shapes. However, the shapes of the eyebrow, nostril and face are difficult to model using a deformable template. We extract them by using an active contour model (snake). In the experiments, 12 models are photographed, and the feature contours are extracted for each portrait. 相似文献
8.
Classical feature extraction and data projection methods have been well studied in the pattern recognition and exploratory data analysis literature. We propose a number of networks and learning algorithms which provide new or alternative tools for feature extraction and data projection. These networks include a network (SAMANN) for J.W. Sammon's (1969) nonlinear projection, a linear discriminant analysis (LDA) network, a nonlinear discriminant analysis (NDA) network, and a network for nonlinear projection (NP-SOM) based on Kohonen's self-organizing map. A common attribute of these networks is that they all employ adaptive learning algorithms which makes them suitable in some environments where the distribution of patterns in feature space changes with respect to time. The availability of these networks also facilitates hardware implementation of well-known classical feature extraction and projection approaches. Moreover, the SAMANN network offers the generalization ability of projecting new data, which is not present in the original Sammon's projection algorithm; the NDA method and NP-SOM network provide new powerful approaches for visualizing high dimensional data. We evaluate five representative neural networks for feature extraction and data projection based on a visual judgement of the two-dimensional projection maps and three quantitative criteria on eight data sets with various properties. 相似文献
9.
Shie-Jue Lee Hsien-Leing Tsai 《IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics》1998,28(4):612-617
B. Hussain and M.R. Kabuka (1994) proposed a feature recognition neural network to reduce the network size of neocognitron. However, a distinct subnet is created for every training pattern. Therefore, a big network is obtained when the number of training patterns is large. Furthermore, recognition rate can be hurt due to the failure of combining features from similar training patterns. We propose an improvement by incorporating the idea of fuzzy ARTMAP in the feature recognition neural network. Training patterns are allowed to be merged, based on the measure of similarity among features, resulting in a subnet being shared by similar patterns. Because of the fusion of training patterns, network size is reduced and recognition rate is increased. 相似文献
10.
A novel cascade face recognition system using hybrid feature extraction is proposed. Three sets of face features are extracted. The merits of Two-Dimensional Complex Wavelet Transform (2D-CWT) are analyzed. For face recognition feature extraction, it has proved that 2D-CWT compares favorably with the traditionally used 2D Gabor transform in terms of the computational complexity and features? stability. The proposed recognition system congregates three Artificial Neural Network classifiers (ANNs) and a gating network trained by the three feature sets. A computationally efficient fitness function of the genetic algorithms is proposed to evolve the best weights of the ensemble classifier. Experiments demonstrated that the overall recognition rate and reliability have been significantly improved in both still face recognition and video-based face recognition. 相似文献
11.
Wen-Chung Kao Author Vitae Ming-Chai Hsu Author VitaeAuthor Vitae 《Pattern recognition》2010,43(5):1736-1747
Recognizing human faces in various lighting conditions is quite a difficult problem. The problem becomes more difficult when face images are taken in extremely high dynamic range scenes. Most of the automatic face recognition systems assume that images are taken under well-controlled illumination. The face segmentation as well as recognition becomes much simpler under such a constrained condition. However, illumination control is not feasible when a surveillance system is installed in any location at will. Without compensating for uneven illumination, it is impossible to get a satisfactory recognition rate. In this paper, we propose an integrated system that first compensates uneven illumination through local contrast enhancement. Then the enhanced images are fed into a robust face recognition system which adaptively selects the most important features among all candidate features and performs classification by support vector machines (SVMs). The dimension of feature space as well as the selected types of features is customized for each hyperplane. Three face image databases, namely Yale, Yale Group B, and Extended Yale Group B, are used to evaluate performance. The experimental result shows that the proposed recognition system give superior results compared to recently published literatures. 相似文献
12.
Convolutional neural networks provide an efficient method to constrain the complexity of feedforward neural networks by weight sharing and restriction to local connections. This network topology has been applied in particular to image classification when sophisticated preprocessing is to be avoided and raw images are to be classified directly. In this paper two variations of convolutional networks-neocognitron and a modification of neocognitron-are compared with classifiers based on fully connected feedforward layers with respect to their visual recognition performance. For a quantitative experimental comparison with standard classifiers two very different recognition tasks have been-chosen: handwritten digit recognition and face recognition. In the first example, the generalization of convolutional networks is compared to fully connected networks; in the second example human face recognition is investigated under constrained and variable conditions, and the limitations of convolutional networks are discussed. 相似文献
13.
Schmidt W.A.C. Davis J.P. 《IEEE transactions on pattern analysis and machine intelligence》1993,15(8):795-801
The authors explore alternatives that reduce the number of network weights while maintaining geometric invariant properties for recognizing patterns in real-time processing applications. This study is limited to translation and rotation invariance. The primary interest is in examining the properties of various feature spaces for higher-order neural networks (HONNs), in correlated and uncorrelated noise, such as the effect of various types of input features, feature size and number of feature pixels, and effect of scene size. The robustness of HONN training is considered in terms of target detectability. The experimental setup consists of a 15×20 pixel scene possibly containing a 3×10 target. Each trial used 500 training scenes plus 500 testing scenes. Results indicate that HONNs yield similar geometric invariant target recognition properties to classical template matching. However, the HONNs require an order of magnitude less computer processing time compared with template matching. Results also indicate that HONNs could be considered for real-time target recognition applications 相似文献
14.
Alahmadi Amani Hussain Muhammad Aboalsamh Hatim A. Zuair Mansour 《Pattern Analysis & Applications》2020,23(2):673-682
Pattern Analysis and Applications - Human face is a widely used biometric modality for verification and revealing the identity of a person. In spite of a great deal of research on face recognition,... 相似文献
15.
This work proposes a method to decompose the kernel within-class eigenspace into two subspaces: a reliable subspace spanned
mainly by the facial variation and an unreliable subspace due to limited number of training samples. A weighting function
is proposed to circumvent undue scaling of eigenvectors corresponding to the unreliable small and zero eigenvalues. Eigenfeatures
are then extracted by the discriminant evaluation in the whole kernel space. These efforts facilitate a discriminative and
stable low-dimensional feature representation of the face image. Experimental results on FERET, ORL and GT databases show
that our approach consistently outperforms other kernel based face recognition methods.
相似文献
Alex KotEmail: |
16.
为了解决人脸识别应用中针对人脸姿态的变化,光照等外部环境变化导致识别率不高,且稀疏表示应用于人脸识别收敛速度慢的情况,提出了一种基于多分量的Gabor特征提取和自适应权重选择的协同表示人脸识别算法(GAW-CRC).特征提取阶段,将Gabor变换的所有特征分量中鉴别能力较差的分量淘汰,剩余分量构建特征字典,分别协同表示对应测试样本的特征分量,将所有剩余分量的识别结果,按照自适应的权重函数加权融合得出最终分类结果.实验证明:算法应用于AR,FERET与Extended Yale B人脸库中,当对应的样本存在人脸角度变化,表情变化和光照条件变化等情况时,能够得到更高的识别率. 相似文献
17.
18.
《Pattern recognition》2014,47(2):556-567
For face recognition, image features are first extracted and then matched to those features in a gallery set. The amount of information and the effectiveness of the features used will determine the recognition performance. In this paper, we propose a novel face recognition approach using information about face images at higher and lower resolutions so as to enhance the information content of the features that are extracted and combined at different resolutions. As the features from different resolutions should closely correlate with each other, we employ the cascaded generalized canonical correlation analysis (GCCA) to fuse the information to form a single feature vector for face recognition. To improve the performance and efficiency, we also employ “Gabor-feature hallucination”, which predicts the high-resolution (HR) Gabor features from the Gabor features of a face image directly by local linear regression. We also extend the algorithm to low-resolution (LR) face recognition, in which the medium-resolution (MR) and HR Gabor features of a LR input image are estimated directly. The LR Gabor features and the predicted MR and HR Gabor features are then fused using GCCA for LR face recognition. Our algorithm can avoid having to perform the interpolation/super-resolution of face images and having to extract HR Gabor features. Experimental results show that the proposed methods have a superior recognition rate and are more efficient than traditional methods. 相似文献
19.
提出一种基于核方法的无监督鉴别投影,在较好地描述人脸图像的同时,对图像进行有效地分类.对核局部保留投影(KLPP)和无监督鉴别投影技术(UDP)进行了相应的研究,将两者互相结合.该方法同时考虑到样本的局部特性和非局部特性,有效地利用了对分类有用的重要信息;此外,将核方法和流形学习方法结合起来,有效地描述人脸图像的非线性变化,对于人脸识别问题有较好的效果.在Yale库上的实验表明,该方法的识别率明显高于UDP和PCA,且有较好的分类效果. 相似文献
20.
Multimedia Tools and Applications - Age variation is a major problem in the area of face recognition under uncontrolled environment such as pose, illumination, expression. Most of the works of this... 相似文献