首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA mismatch repair plays a key role in the maintenance of genetic fidelity. Mutations in the human mismatch repair genes hMSH2, hMLH1, hPMS1, and hPMS2 are associated with hereditary nonpolyposis colorectal cancer. The proliferating cell nuclear antigen (PCNA) is essential for DNA replication, where it acts as a processivity factor. Here, we identify a point mutation, pol30-104, in the Saccharomyces cerevisiae POL30 gene encoding PCNA that increases the rate of instability of simple repetitive DNA sequences and raises the rate of spontaneous forward mutation. Epistasis analyses with mutations in mismatch repair genes MSH2, MLH1, and PMS1 suggest that the pol30-104 mutation impairs MSH2/MLH1/PMS1-dependent mismatch repair, consistent with the hypothesis that PCNA functions in mismatch repair. MSH2 functions in mismatch repair with either MSH3 or MSH6, and the MSH2-MSH3 and MSH2-MSH6 heterodimers have a role in the recognition of DNA mismatches. Consistent with the genetic data, we find specific interaction of PCNA with the MSH2-MSH3 heterodimer.  相似文献   

2.
3.
We examined the stability of microsatellites of different repeat unit lengths in Saccharomyces cerevisiae strains deficient in DNA mismatch repair. The msh2 and msh3 mutations destabilized microsatellites with repeat units of 1, 2, 4, 5, and 8 bp; a poly(G) tract of 18 bp was destabilized several thousand-fold by the msh2 mutation and about 100-fold by msh3. The msh6 mutations destabilized microsatellites with repeat units of 1 and 2 bp but had no effect on microsatellites with larger repeats. These results argue that coding sequences containing repetitive DNA tracts will be preferred target sites for mutations in human tumors with mismatch repair defects. We find that the DNA mismatch repair genes destabilize microsatellites with repeat units from 1 to 13 bp but have no effect on the stability of minisatellites with repeat units of 16 or 20 bp. Our data also suggest that displaced loops on the nascent strand, resulting from DNA polymerase slippage, are repaired differently than loops on the template strand.  相似文献   

4.
Because the phenomena of managing and therapeutically responding to confused elderly hospitalized patients is complex and difficult, a group of advanced practice nurses, supported by a pharmacist, nursing administration, and a School of Nursing professor, was commissioned to explore the research-based literature and provide practice recommendations for these patients. This article identifies one process undertaken for synthesizing and grounding an immense body of literature related to confused elderly patients. The literature review served to begin clarifying the differences between the diagnosis and required interventions for managing either acute or chronic confusion. These interventions were articulated within a protocol format (Marker model) familiar to staff members at our institution. The development, implementation, and evaluation of the protocol is presented, as well as suggestions for further research.  相似文献   

5.
During replication, the primary function of the eukaryotic DNA mismatch repair (MMR) system is to recognize and correct mismatched base pairs within the DNA helix. Deficiencies in MMR have been reported previously in cases of hereditary nonpolyposis colorectal cancer and sporadic tumors occurring in a variety of tissues including gliomas. Furthermore, recent evidence indicates that the MMR system may be involved in mediating therapeutic sensitivity to alkylating agents. In this study, 22 neoplastic tissue samples from 22 patients who underwent surgical resection for medulloblastoma, a common cerebellar tumor of childhood, were assayed for the presence or absence of MMR polypeptides using Western blot and immunohistochemical techniques. Results from these experiments indicate that the MMR system is not commonly deficient in medulloblastoma.  相似文献   

6.
In the D171G/D230A mutant generated at conserved aspartate residues in the Exo1 and Exo2 sites of the 3'-5' exonuclease domain of the yeast mitochondrial DNA (mtDNA) polymerase (pol-gamma), the mitochondrial genome is unstable and the frequency of mtDNA point mutations is 1500 times higher than in the wild-type strain and 10 times higher than in single substitution mutants. The 10(4)-fold decrease in the 3'-5' exonuclease activity of the purified mtDNA polymerase is associated with mismatch extension and high rates of base misincorporation. Processivity of the purified polymerase on primed single-stranded DNA is decreased and the Km for dNTP is increased. The sequencing of mtDNA point mutations in the wild-type strain and in proofreading and mismatch-repair deficient mutants shows that mismatch repair contributes to elimination of the transitions while exonucleolytic proofreading preferentially repairs transversions, and more specifically A to T (or T to A) transversions. However, even in the wild-type strain, A to T (or T to A) transversions are the most frequent substitutions, suggesting that they are imperfectly repaired. The combination of both mismatch repair and proofreading deficiencies elicits a mitochondrial error catastrophe. These data show that the faithful replication of yeast mtDNA requires both exonucleolytic proofreading and mismatch repair.  相似文献   

7.
Mutants with enhanced spontaneous mutability (hsm) to canavanine resistance were induced by N-methyl-N-nitrosourea in Saccharomyces cerevisiae. One bearing the hsm3-1 mutation was used for this study. This mutation does not increase sensitivity to the lethal action of different mutagens. The hsm3-1 mutation produces a mutator phenotype, enhancing the rates of spontaneous mutation to canavanine resistance and reversions of lys1-1 and his1-7. This mutation increases the rate of intragenic mitotic recombination at the ADE2 gene. The ability of the hsm3 mutant to correct DNA heteroduplex is reduced in comparison with the wild-type strain. All these phenotypes are similar to ones caused by pms1, mlhl and msh2 mutations. In contrast to these mutations, hsm3-1 increases the frequency of ade mutations induced by 6-HAP and UV light. Epistasis analysis of double mutants shows that the PMS1 and HSM3 genes control different mismatch repair systems. The HSM3 gene maps to the right arm of chromosome II, 25 cM distal to the HIS7 gene. Strains that bear a deleted open reading frame YBR272c have the genetic properties of the hsm3 mutant. The HSM3 product shows weak similarity to predicted products of the yeast MSH genes (homologs of the Escherichia coli mutS gene). The HSM3 gene may be a member of the yeast MutS homolog family, but its function in DNA metabolism differs from the functions of other yeast MutS homologs.  相似文献   

8.
Mutations of the presenilin-1 gene are a major cause of familial early-onset Alzheimer's disease. Presenilin-1 can associate with members of the catenin family of signalling proteins, but the significance of this association is unknown. Here we show that presenilin-1 forms a complex with beta-catenin in vivo that increases beta-catenin stability. Pathogenic mutations in the presenilin-1 gene reduce the ability of presenilin-1 to stabilize beta-catenin, and lead to increased degradation of beta-catenin in the brains of transgenic mice. Moreover, beta-catenin levels are markedly reduced in the brains of Alzheimer's disease patients with presenilin-1 mutations. Loss of beta-catenin signalling increases neuronal vulnerability to apoptosis induced by amyloid-beta protein. Thus, mutations in presenilin-1 may increase neuronal apoptosis by altering the stability of beta-catenin, predisposing individuals to early-onset Alzheimer's disease.  相似文献   

9.
Normal and tumor DNA samples of 35 patients with sporadic colorectal carcinoma were analyzed for microsatellite alterations at 12 markers linked to mismatch repair loci: hMLH1, hMSH2, hMSH3, hMSH6, hPMS1 and hPMS2. Remarkably, no correlation was observed between the replication error phenotype (RER+) and allelic losses at these loci. Hemizygous deletions, seen in 6/35 (17%) informative cases at hMLH1, 4/27 (15%) at hMSH2/hMSH6 and 6/34 (18%) at hMSH3, were rarely found in RER+ tumors. Since mismatch repair protein components act in molecular complexes of defined stoichiometry we propose that hemizygous deletion of the corresponding loci may be involved in colorectal tumorigenesis through defects in cellular functions other than replication error correction. The analysis of the methylation status of the promoter region of hMLH1 revealed that methylation might be an important mechanism of this locus inactivation in RER+ sporadic colorectal cancer.  相似文献   

10.
Firing rate histogram is a widely used mathematical method for representing the activity of single neurons and small neural networks. Nevertheless, observation of fine temporal modulation or correlations of spike trains might be troublesome if the mean firing rate is low or rapid local changes occur. The spike density function (SDF) obtained by convolving the spike train with smooth and continuous kernel function proves to be a more appropriate approach in characterization of the firing pattern. The resulting time-function is a continuous and derivable one, thus it can be used as a dynamical variable of the neuronal activity. In the present paper applications of SDF in analysis of the firing patterns of Lymnaea neurons are described and its performance is compared to other quantitative methods.  相似文献   

11.
12.
The human DNA mismatch repair genes hMSH2 and hMSH6 encode the proteins that, together, bind to mismatches to initiate repair of replication errors. Human tumor cells containing mutations in these genes have strongly elevated mutation rates in selectable genes and at microsatellite loci, although mutations in these genes cause somewhat different mutator phenotypes. These cells are also resistant to killing by certain drugs and are defective in mismatch repair. Because the elevated mutation rates in these cells may lead to mutations in additional genes that are causally related to the other defects, here we attempt to establish a cause-effect relationship between the hMSH2 and hMSH6 gene mutations and the observed phenotypes. The endometrial tumor cell line HEC59 contains mutations in both alleles of hMSH2. The colon tumor cell line HCT15 contains mutations in hMSH6 and also has a sequence change in a conserved region of the coding sequence for DNA polymerase delta, a replicative DNA polymerase. We introduced human chromosome 2 containing the wild-type hMSH2 and hMSH6 genes into HEC59 and HCT15 cells. Introduction of chromosome 2 to HEC59 cells restored microsatellite stability, sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine treatment, and mismatch repair activity. Transfer of chromosome 2 to HCT15 cells also reduced the mutation rate at the HPRT locus and restored sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine treatment and mismatch repair activity. The results demonstrate that the observed defects are causally related to mutations in genes on chromosome 2, probably hMSH2 or hMSH6, but are not related to sequence changes in other genes, including the gene encoding DNA polymerase delta.  相似文献   

13.
In addition to nucleotide excision repair (NER), the fission yeast Schizosaccharomyces pombe possesses a UV damage endonuclease (UVDE) for the excision of cyclobutane pyrimidine dimers and 6-4 pyrimidine pyrimidones. We have previously described UVDE as part of an alternative excision repair pathway, UVDR, for UV damage repair. The existence of two excision repair processes has long been postulated to exist in S.pombe, as NER-deficient mutants are still proficient in the excision of UV photoproducts. UVDE recognizes the phosphodiester bond immediately 5'of the UV photoproducts as the initiating event in this process. We show here that UVDE activity is inducible at both the level of uve1+ mRNA and UVDE enzyme activity. Further, we show that UVDE activity is regulated by the product of the rad12 gene.  相似文献   

14.
During recent years, genes controlling mutation in higher eukaryotes have been found to be involved actively in carcinoma regeneration in cells. In this respect, studying the genetic control of mutagenesis becomes a key direction of research into mechanisms responsible for cancer generation. The results of studying interaction of mutations in the HIM and HSM genes, controlling spontaneous and induced mutagenesis in yeasts, and mutations impairing three known pathways of DNA damage repair in this microorganism, are described in this work. It was shown that mutation rev3 completely blocks UV-induced mutagenesis in all mutants studied. On the other hand, mutation rad2 synergistically interacts with mutations him1, hsm1, hsm3, hsm6, and hsm2, thus enhancing the frequency of UV-induced mutagenesis in double mutants multiple times. Mutations him2 and him3 manifested epistatic interaction with mutation rad2. With mutation rad54, the interaction was epistatic for mutations him1 and hsm2 and was additive for mutations hsm1, him2, and him3. On the basis of the data obtained, we developed a scheme for the appearance of mismatch bases in the process of repair of UV-induced DNA damage.  相似文献   

15.
Several human neurodegenerative diseases result from expansion of CTG/CAG or CGG/CCG triplet repeats. The finding that single-stranded CNG repeats form hairpin-like structures in vitro has led to the hypothesis that DNA secondary structure formation is an important component of the expansion mechanism. We show that single-stranded DNA loops containing 10 CTG/CAG or CGG/CCG repeats are inefficiently repaired during meiotic recombination in Saccharomyces cerevisiae. Comparisons of the repair of DNA loops with palindromic and nonpalindromic sequences suggest that this inefficient repair reflects the ability of these sequences to form hairpin structures in vivo.  相似文献   

16.
A new gene, mutK, of Vibrio cholerae, encoding a 19-kDa protein which is involved in repairing mismatches in DNA via a presumably methyl-independent pathway, has been identified. The product of the mutK gene cloned in either high- or low-copy-number vectors can reduce the spontaneous mutation frequency of Escherichia coli mutS, mutL, mutU, and dam mutants. The spontaneous mutation frequency of a chromosomal mutK knockout mutant was almost identical to that of wild-type V. cholerae cells, indicating that when the methyl-directed mismatch repair is blocked, the repair potential of MutK becomes apparent. The complete nucleotide sequence of the mutK gene has been determined, and the deduced amino acid sequence showed three open reading frames (ORFs), of which the ORF3 represents the mutK gene product. The mutK gene product has no significant homology with any of the proteins deposited in the EMBL data bank. ORF2, located upstream of mutK, encodes a 14-kDa protein which has more than 70% homology with a hypothetical protein found only downstream of the E. coli vsr gene. ORF1, located farther upstream of mutK, has more than 80% homology with a major cold shock protein found in several bacteria. Downstream of mutK, a partial ORF having 60% homology with an RNA methyltransferase has been identified. The mutK gene has recently been positioned in the ordered cloned DNA map of the genome of the V. cholerae strain from which the gene was isolated (10).  相似文献   

17.
18.
Expression of the DNA mismatch repair (MMR) pathway was examined in the adult and developing rat brain. Rat homologues of human GTBP and MSH2, which are essential components of the post-replicative DNA MMR system, were identified in nuclear extracts from the adult and developing rat brain. Developmental studies showed that both GTBP and MSH2 levels were higher in nuclei isolated from the embryonic brain (day 16) than adult brain. However, this difference was not as dramatic as the difference in the number of proliferating cells. Levels of thymine DNA glycosylase (TDG), the enzyme which catalyzes the first step in short patch G:T mismatch repair, were also decreased in adult compared to embryonic brain. In the adult brain, MMR proteins were elevated in nuclear extracts enriched for neuronal nuclei. These results suggest that adult brain cells have the capacity to carry out DNA mismatch repair, in spite of a lack of ongoing DNA replication.  相似文献   

19.
20.
Base excision repair (BER) constitutes a ubiquitous excision repair mechanism, which is responsible for the removal of multiple types of damaged and inappropriate bases in DNA. We have employed a yeast cell-free system to examine the biochemical mechanism of the BER pathway in lower eukaryotes. Using uracil-containing DNA as a model substrate, we demonstrate that yeast BER requires Apn1 protein, an Escherichia coli endonuclease IV homolog. In extracts of an apn1 deletion mutant, the 5'-incision at AP (apurinic/apyrimidinic) sites is not detectable, supporting the notion that yeast contains only one major 5'-AP endonuclease. The processing of the 5'-deoxyribose phosphate moieties was found to be a rate-limiting step. During BER of uracil-containing DNA, repair patch sizes of 1-5 nucleotides were detected, with single nucleotide repair patches predominant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号