首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
粘结剂原料钴粉在制备超细晶WC-Co硬质合金中的作用至关重要.采用超细/纳米级粒度的球形钴粉不仅可以降低合金的烧结致密化温度从而抑制WC晶粒异常长大,同时能够减少球磨混合时间、改善合金中的钴相分布,有助于获得高性能的超细和纳米晶WC-Co硬质合金.总结了近年来超细和纳米晶WC-Co硬质合金用钴粉的国内外研究开发状况,介绍了采用液相沉淀-氢还原法制备球形纳米钴粉的取得的实验成果,指出该法是生产超细和纳米晶WC-Co硬质合金用纳米钴粉的一种行之有效的新工艺路线.  相似文献   

2.
研究了低于共晶温度下热压固结与传统液相烧结对用超细原料制备的WC-20Co-1Y2O3硬质合金组织结构与性能的影响.研究结果表明热压固结的合金具有组织结构致密、细小、均匀、各向同性的特点,但是合金中存在较多的钴池,采用超细原料、较高的液相烧结温度制备高钴硬质合金,合金中的稀土不能对合金中晶粒非均匀长大产生有效的抑制作用,合金晶粒组织呈现双模结构,其中粗大WC大多为极状晶,因而合金韧性较高.  相似文献   

3.
研究采用传统硬质合金生产工艺制备了超细晶WC-1Cr3C2-12Co硬质合金,用场发射扫描电镜观察了1130~1360℃真空烧结合金的微观组织结构,定量分析了合金中的残余孔隙、WC硬质相的形貌、晶粒尺寸及其分布随烧结温度的变化规律,对添加的Cr3C2晶粒长大抑制剂和稀土的存在形态及其对Co黏结相分布的影响进行了分析评价。  相似文献   

4.
烧结工艺对低Co超细晶硬质合金性能的影响   总被引:4,自引:0,他引:4  
低Co超细晶硬质合金具有比常规的超细晶硬质合金更高的硬度、耐磨性、红硬性,在精密机械、加工刀具、特种耐磨材料及零件、拉拔模具等领域有其独特的优势和广泛的应用。本文以超细WC粉和球形Co粉为原料,采用真空烧结或低压烧结制备低Co超细晶硬质合金。采用低压烧结技术可成功制备出硬度为2110 HV30,矫顽力为55.7 kA/m,抗弯强度为2 250 MPa的低Co超细晶硬质合金。采用SEM、金相显微镜、维氏硬度计、矫顽磁力仪、材料实验机等研究烧结工艺对合金显微组织和物理机械性能的影响。结果表明:提高烧结温度或采用低压烧结,可以使低Co超细晶硬质合金中的孔隙度减少,强度提高。低压烧结制备的合金晶粒度大于真空烧结制备的合金晶粒度,但是采用真空烧结制备的合金中易出现WC晶粒异常长大现象。  相似文献   

5.
EBSD在超细硬质合金WC晶粒尺寸统计中的应用   总被引:1,自引:0,他引:1  
硬质合金中WC晶粒度的统计随其尺寸的降低,难度大幅升高。本文作者在多次实验的基础上,成功地将电子背散射衍射(EBSD)技术应用于超细WC-Co硬质合金WC晶粒尺寸统计。以样品A合金(晶粒度约0.2~0.4μm)为例,应用EBSD统计其平均晶粒尺寸为0.36μm的同时,还与其他晶粒度统计方法进行对比分析。另外,取样品B(晶粒度约0.1~0.3μm),经两种不同的烧结工艺烧结后分别进行EBSD分析,对比分析烧结温度对超细WC晶粒长大的影响。  相似文献   

6.
W-Co-纳米碳管反应烧结制备高度取向硬质合金   总被引:1,自引:0,他引:1  
研究了微米级钨粉(2μm)和多壁纳米碳管(直径10nm)反应烧结制备硬质合金的过程,制得了硬度高于HRA94的YG8硬质合金,其主要特点是WC晶粒(0001)晶面在垂直压制的方向上形成了高度的取向。对在800~1410℃不同反应温度下烧结的样品,进行了X射线衍射和扫描电镜分析,确定了钨和多壁纳米碳管的反应过程产物、不同晶面的取向程度和在不同温度下的显微组织形貌。研究表明,由于垂直方向的(0001)晶面的择优取向,这个方向上晶粒呈长条状和三角形,晶粒尺寸小于2μm,无明显的晶粒生长,与原料钨粉颗粒尺寸相比较,显示了颗粒尺寸的遗传性。新合金的硬度等力学性能高于传统工艺制备的相同钴成分、相同粘结相平均自由程的硬质合金。  相似文献   

7.
以经喷雾转化、煅烧、低温还原碳化工艺制备出的纳米晶WC-6%Co复合粉末为原料,不添加晶粒长大抑制剂,经湿磨、成形和压力烧结工艺,成功制备出WC晶粒度在400nm左右的超细晶WC-Co硬质合金,并与传统工艺制备的合金进行性能对比。结果表明:复合粉末制备的合金中WC晶粒大小、组元分布更加均匀,晶粒无异常长大现象,强度和硬度均高于传统工艺制备的合金。  相似文献   

8.
以纳米WC粉、超细钴粉为原料,通过滚动球磨制备纳米晶WC-Co混合料,经成形和压力烧结制备出纳米晶硬质合金,研究了球磨时间和烧结温度对纳米晶WC-Co硬质合金组织结构和性能的影响.结果表明:长时间滚动球磨和配合合适的烧结温度可以实现合金组织均匀细小和双高性能,当球磨时间为82 h,在1390℃烧结的纳米晶硬质合金在性能...  相似文献   

9.
张立  陈述  张传福  黄伯云 《稀有金属》2004,28(6):979-982
采用超细WC原料,在WC-20Co合金中加入纳米Y2O3,在1440℃的液相烧结温度下获得了含板状晶WC双模组织结构的合金。通过对比低于共晶温度下热压固结工艺与传统液相烧结工艺制备的WC-20Co=1Y2O3硬质合金的组织结构发现,液相烧结合金中WC板状晶是在液相烧结阶段通过液相重结晶形成的,均匀分散在合金中的Y2O3具有促进WC从粘结相中均匀析出长大、抑制WC沿C轴方向生长的作用,因而使合金中粗大的WC呈现板状晶的形貌。研究结果表明,板状晶强化的双模结构WC-20Co—1Y2O3合金具有较好的综合性能。  相似文献   

10.
超细晶硬质合金的制备   总被引:3,自引:1,他引:3  
以纳米WC粉末与超细钴粉为原料,采用行星球磨混料→压制成形→氢气脱胶→真空烧结工艺制备了WC-10Co超细晶硬质合金.研究表明,采用行星球磨混料获得的混合料分散均匀,颗粒细小且成形性好.采用该混合料在1 360℃下真空烧结制备的超细硬质合金其平均晶粒尺寸约0.34μm,抗弯强度3 100 MPa,硬度HV60为1 900,断裂韧性10.3 MPa·m1/2  相似文献   

11.
加混合稀土WC—8Co合金的组织和性能   总被引:4,自引:0,他引:4  
探讨了添加超细混合稀土氧化物微粉对WC-8Co硬质合金组织结构和性能的优化机理.结果表明,混合稀土氧化物提高WC-8CO合金强韧性的原因,不仅是由于WC晶粒尺寸的细化、不连续长大的粗晶WC的消除和立方钻相含量的提高,还与合金制品宏观应力的增加有关。  相似文献   

12.
采用水溶液化学法制备的纳米复合粉作原料,研究制备超细晶挤压圆棒的生产工艺。含钴12%(质量分数)的WC/Co纳米复合粉中加入适量的复合抑制剂,经湿磨、挤压成型、加压烧结后检测其合金特性值,通过对比不同湿磨时间和烧结温度条件下的合金性能,研究复合粉生产挤压圆棒的工艺参数,研究结果表明:复合粉可应用挤压成型工艺生产出高性能的圆棒。钴12%合金圆棒的硬度可达92.8RA以上,抗弯强度达4 200MPa,碳化钨晶粒度小于0.4μm。  相似文献   

13.
纳米硬质合金进展   总被引:20,自引:3,他引:17  
综述了机械合金化、喷射转换、原位渗碳还原、共沉淀等多种WC Co纳米硬质合金粉末的制备方法 ,指出纳米WC Co粉末烧结过程中的致密化温度有明显的降低 ,晶粒长大趋势很强 ,同时给出了致密化后合金的显微组织、力学性能研究发展概况。提出目前存在的问题是烧结过程的晶粒长大的控制 ,采用新型的烧结手段实现快速烧结将是纳米硬质合金未来的发展方向  相似文献   

14.
纳米级超细晶粒硬质合金烧结收缩动力学曲线特征的研究   总被引:2,自引:0,他引:2  
利用高温膨胀仪在氢气气氛下首次测定和研究了WC (Ni·Fe) 8%、WC VC (Ni·Fe) 8%纳米级超细晶粒 (WC平均晶粒 2 0 0~ 30 0nm)硬质合金与常规细颗粒 (WC平均晶粒≤ 1 5μm)硬质合金压坯在烧结过程中的膨胀收缩动力学曲线特征、起始收缩温度、剧烈收缩温度随温度变化的收缩速率与WC粉的总碳含量、WC粉的平均粒径以及压坯密度的关系。结果发现 ,超细晶粒硬质合金 (WC粉总碳 6 0 1% )在烧结过程中物理膨胀现象较弱 ,开始收缩温度与剧烈收缩温度均较低 ,分别为 80 0℃ ,1150℃ ,最大收缩速率高达 10 50× 10 -6mm ℃ ,常规细晶粒合金的物理膨胀严重 ,在 62 0~ 130 0℃范围内相对膨胀 1 7% ,开始收缩温度与剧烈收缩温度分别为 132 0℃和 1390℃ ,最大收缩速率为 60 0× 10 -6mm ℃ ,远低于纳米级超细晶粒合金。WC粉总碳含量增加 ,合金的开始收缩温度及剧烈收缩温度均明显降低。压坯密度提高 ,合金的最终收缩率降低。在压坯密度一定的情况下 ,随着烧结温度提高 ,合金收缩率增加。  相似文献   

15.
中国超细和纳米晶WC-Co硬质合金的研究开发概况   总被引:8,自引:4,他引:8  
林晨光 《中国钨业》2005,20(2):19-23
概述了我国超细和纳米晶W C-Co硬质合金的研究开发现状。我国在制备超细晶硬质合金100nm左右的纳米级粉末原料(W C,W C-Co复合粉末)的批量化生产技术及烧结过程中抑制W C晶粒长大等关键技术方面已取得重要进展,可批量生产0.4~0.6滋m级超细晶硬质合金。添加新型VC基二元晶粒生长抑制剂可实验室制备W C平均晶粒度70nm的纳米晶硬质合金并获得优异性能。在此基础上,对生产技术的重点方向进行研究开发,推动我国超细晶硬质合金向产业化发展的基础条件已趋于成熟。  相似文献   

16.
利用高能球磨制备的纳米晶W(Co,C)过渡相粉末制备了纤维状WC硬质合金。采用X射线衍射(XRD)分析球磨粉末及不同温度烧结样品的相组成,并计算WC晶粒尺寸;通过矫顽力研究高能球磨粉末Co的存在方式以及固相烧结阶段粉末相转变和晶粒长大行为。结果表明:球磨粉末中矫顽力由0(球磨时间22h)逐渐增加,Co先固溶在W晶格中,随球磨时间增加析出;烧结温度为700~900℃时,矫顽力由0急剧增加,η相分解析出单磁畴的Co,WC晶粒长大较慢;烧结温度为1 050~1 250℃时,矫顽力下降,大量多磁畴Co出现,WC晶粒长大速度加快;烧结温度为900~1 050℃时,矫顽力几乎不变,WC晶粒长大缓慢;烧结温度超过1 250℃时,矫顽力缓慢增加,Co相晶型发生改变。  相似文献   

17.
制备纳米/超细晶WC-Co类硬质合金的两大关键因素是优质纳米/超细晶WC-Co复合粉末的制备和烧结过程中晶粒长大过程的控制。从纳米/超细晶WC-Co复合粉末的制备技术和纳米/超细晶硬质合金的烧结技术两方面,综合评述了近年来国内外的研究进展,并展望了纳米/超细晶硬质合金的发展前景和今后研究开发的重点。  相似文献   

18.
烧结方法对WC-Co硬质合金性能的影响   总被引:1,自引:0,他引:1  
以原位还原碳化反应法制备的超细WC-Co复合粉为原料,分别采用放电等离子烧结、低压烧结和真空烧结工艺获得块体硬质合金,系统研究烧结方法对合金的显微组织、密度及力学性能的影响。结果表明:放电等离子烧结的合金中,主相为WC和Co,有少量η相(Co6W6C),低压烧结和真空烧结获得的合金中物相为WC和Co;所用3种不同的烧结方法均能获得细晶块体硬质合金,其中放电等离子烧结的晶粒最细为0.35μm;低压烧结合金具有优异的综合性能,HV30为15 121 MPa,断裂韧性为13.6 MPa.m1/2,横向断裂强度为4 210 MPa。  相似文献   

19.
超细WC-Co硬质合金的微波烧结研究   总被引:2,自引:0,他引:2  
采用微波烧结工艺制备了WC-Co超细硬质合金,并研究了烧结工艺对烧结样品性能的影响。结果表明:微波烧结与真空烧结WC-Co超细硬质合金相比烧结温度更低,保温时间更短,在1300℃的烧结温度下瞬时保温(0min),密度就可达到14.27g/cm3,而且在烧结温度1350℃保温0min时硬度HRA达到94.0,并且样品WC晶粒尺寸在烧结过程中长大不明显,随着烧结温度的提高和保温时间的增加WC晶粒尺寸的变化不大。  相似文献   

20.
高能球磨和放电等离子体烧结制备超细WC-8Co硬质合金   总被引:2,自引:0,他引:2  
以0 .8 1μm的WC粉和1.3 5 μm的Co粉为原料,采用高能球磨制备了粉末比表面积为6.82m2 ·g- 1 ,粉末粒度为5 9.4nm的WC 8Co混合粉末。将此纳米粉末采用放电等离子体烧结(SPS)制备了WC晶粒度为0 .5~0 .6μm、硬度为HRA93 .5的超细硬质合金。研究了SPS烧结温度和添加晶粒抑制剂对显微组织与HRA硬度的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号