首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LCL型并网逆变器采用电容电流反馈有源阻尼在弱电网下进行并网电流控制时,如果系统环路谐振频率高于1/6的采样频率,数字控制延时会导致并网逆变器在较宽范围变化的电网阻抗影响下鲁棒性较差甚至失稳。通过分析指出,电容电流反馈有源阻尼环路可等效为并联在滤波电容两端的虚拟阻抗Zeq(s),表现出的负阻特性是造成系统失稳的主要原因。鉴于此,提出一种采用负一阶惯性环节进行电容电流反馈有源阻尼的鲁棒性方法,在电容电流阻尼环路中引入惯性环节,利用频率稳定性分析对所提方法进行详细论述,并给出相关参数的设计过程。理论分析表明,该方法可保证Zeq(s)在LCL滤波器谐振频率有效范围内始终处于正阻特性范围,不仅提高系统的稳定裕度,并网系统的谐波谐振也得到抑制。此外,该方法具有较好的灵活性,当采用电容电压反馈有源阻尼控制并进行锁相时,可节省一组电流传感器的使用。最后,通过实验验证了所提方法的有效性。  相似文献   

2.
弱电网下多逆变器并网系统的谐振问题一直广受关注,当计及背景谐波时,逆变器的电网电压前馈环节引入正反馈通路,将进一步恶化系统的电能质量。鉴于此,提出了一种弱电网下计及背景谐波的多并网逆变器阻抗重塑谐振抑制方法。通过对逆变器的控制环节进行导纳划分,建立基于三分解导纳的多逆变器并网等效模型,并利用模态分析法得到逆变器数量和电网侧阻抗变化时系统的谐振特性。计及电网电压前馈和电容电流反馈环节,对加权电流控制进行改进,并通过公共耦合点并联虚拟导纳对逆变器进行阻抗重塑,以实现对弱电网下系统谐振的抑制。仿真结果表明,所提方法既能极大地减小背景谐波对逆变器输出电流的影响,又能有效地抑制弱电网下多逆变器并网系统的谐振。  相似文献   

3.
弱电网条件下,各逆变器之间以及逆变器与电网之间会形成交互耦合,从而影响到系统的稳定运行。针对该问题,提出了一种弱电网下多逆变器并网系统的全局谐振抑制策略。首先,基于并网电流反馈,提出改进的有源阻尼策略形成虚拟阻抗,来增加逆变器自身阻尼,从而抑制多逆变器并联谐振;其次,通过结合电网阻抗测量的改进电网电压前馈策略,抑制电网背景谐波电压通过电网阻抗产生的谐波谐振,从而提高多逆变器并网系统的稳定性。仿真和实验结果均验证了所提谐振抑制策略的有效性和可行性。  相似文献   

4.
多并网逆变器并联系统存在并联谐振问题,且会受到电网阻抗和并联逆变器台数影响导致并联谐振频率点偏移,给该并联系统的控制及稳定运行带来一定的难度。建立了多并网逆变器并联系统的阻抗模型,并根据阻抗重塑原理,采用基于虚拟阻抗的全局谐振抑制方法,通过在公共连接点并联额外的电力电子装置,实时检测公共连接点处谐波电压,采用基于变换器侧电流反馈控制策略,产生一定大小且和谐振频率相关的虚拟阻抗,实现对电网阻抗的重塑以抑制并联系统的谐振。该方法在不改变各个逆变器原有控制策略的情况下,既可以抑制并联谐振,又可以提高整个系统的稳定性。最后,通过仿真验证所研究全局谐振抑制方法的正确性与可行性。  相似文献   

5.
LCL型并网逆变器对高频谐波的衰减效果显著,但是存在谐振问题。电容电流反馈有源阻尼可有效阻尼LCL滤波器的谐振峰,在模拟控制下,它等效为在滤波电容上并联一个电阻。然而,采用数字控制时,控制延时使其不再等效为一个电阻,而是一个与频率相关的阻抗。并且在高于1/6的采样频率时,该等效阻抗表现出负阻特性,当谐振频率高于1/6的采样频率时,负阻会降低系统对电网阻抗的鲁棒性。特别地,当谐振频率等于1/6的采样频率时,系统无法稳定。为此,该文提出电容电流即时采样方法,以减小电容电流反馈有源阻尼的控制延时,使其更接近于滤波电容并联电阻的特性。这样,不仅提高了系统的鲁棒性,而且,即使谐振频率等于1/6的采样频率,系统也具有很好的稳定性。以单相LCL型并网逆变器为例,进行实验验证,实验结果证明了所提出的电容电流即时采样方法是有效的。  相似文献   

6.
针对孤岛模式下逆变器并联系统的谐振问题,首先建立考虑数字控制延时以及数字滤波等非线性因素的单台逆变器系统等效模型,并由此扩展得到孤岛模式下多逆变器并联系统的等效模型。进一步提出利用孤岛模式下逆变器并联系统的等效导纳进行系统的谐振特性分析,分析结果表明多逆变器之间谐波交互可能引发系统谐振,且系统的谐振特性与虚拟阻抗、负载以及反馈滤波器等因素密切相关。最后,针对系统的谐振抑制提出合理选取虚拟电感大小并在电流反馈环节引入串联反馈滤波器的新策略。实验结果验证了所建孤岛模式下逆变器并联系统数学模型的正确性以及所提出的谐振特性分析方法和谐振抑制策略的可行性。  相似文献   

7.
位于电网末梢或偏远地区的新能源发电弱电网中,大量本地阻感性负荷的接入会引起电网阻抗变化与频率偏移及电压波动,进而影响LCL逆变器自身谐振尖峰抑制及其输出有功与无功动态调节过程。对此,提出了一种LCL逆变器阻尼谐振抑制与功率快速调节方法,包括鲁棒并网电流反馈有源阻尼控制、同步参考系准比例积分控制及功率快速调节。提出的鲁棒并网电流反馈有源阻尼控制增强了系统阻尼特性,抑制了LCL谐振尖峰;光伏能量功率前馈和负载无功快速检测可实现LCL逆变器的有功功率快速调节与电压无功紧急支撑功能;同步参考系准比例积分控制可降低电网基波频率偏移对系统稳定性的影响,增强了系统整体鲁棒性。通过深入分析控制系统动态响应和稳定性,给出了控制参数优化设计方法。最后,仿真及实验结果验证了所提控制策略的可行性。  相似文献   

8.
首先建立了多机并联逆变器系统的数学模型,并从逆变器并联台数和电网等效阻抗两方面分析了系统的谐振特性;在此基础上,提出了一种多机并联逆变器全局谐振抑制策略,对其中一台逆变器进行附加阻尼控制,通过引入二阶带通滤波器控制器,使添加的虚拟电导仅作用于谐振频率处而不对系统的基波性能产生影响;最后通过MATLAB/Simulink软件进行仿真验证,结果表明所提控制策略有效、可行。  相似文献   

9.
并网电流反馈有源阻尼(grid-current-feedback-active-damping,GCFAD)策略可以在不增加额外传感器的前提下,有效抑制LCL型并网逆变器的谐振尖峰。在电网电压畸变的工况下,GCFAD策略往往与电网电压前馈策略同时使用以改善并网电流质量。然而,通过研究发现,传统GCFAD策略等效虚拟阻抗在中低频段的正阻特性会导致并网逆变器输出阻抗在中频段产生一定的相位滞后,从而降低了系统在电网电压畸变且附加电网电压前馈策略的情况下,对电网阻抗变化的鲁棒性。为了解决这一问题,提出了一种高鲁棒性并网电流反馈有源阻尼(high robustness grid-current-feedback-active-damping,HR-GCFAD)策略,使虚拟阻抗在高频处呈现正阻特性以抑制LCL谐振尖峰,增强了系统的稳定性;在中低频段呈现负阻特性以提高系统中频段输出阻抗相位,进而提高了系统在附加电网电压前馈策略时对电网阻抗变化的鲁棒性。理论分析和实验结果充分验证了所提策略的有效性。  相似文献   

10.
逆变器是新能源发电系统的核心装置。然而,由于逆变器可能呈现负阻抗特性,并联逆变器系统存在较大的谐振风险。谐振现象不但严重影响并网的电能质量,还可能危及电网安全稳定运行。针对上述问题,首先建立了电压控制模式下逆变器的等效阻抗模型,分析了逆变器阻抗特性与控制延时间的解析表达和定量关系,指出其负阻抗特性会随着控制延时的减小而减弱。在此基础上,提出了基于自适应滤波算法的谐振抑制策略。该策略通过减小等效控制延时,重塑逆变器对外阻抗,实现了谐振抑制。最后,通过仿真及实验验证了所提谐振抑制策略的正确性和有效性。  相似文献   

11.
三相光伏并网逆变器电网高阻抗谐振抑制方法   总被引:1,自引:0,他引:1  
针对电网电压高阻抗LCL滤波器谐振问题,提出一种虚拟电阻+电容有源阻尼方法。该方法将虚拟电阻和电容串联之后与三相光伏并网逆变器的滤波电容并联。通过滤波电容电压得到虚拟电阻和电容支路的电流,将虚拟电阻和电容支路的电流作为LCL滤波器谐振抑制有源阻尼电流给定。通过逆变侧电流闭环控制,实现对三相光伏并网逆变器电网高阻抗LCL滤波器谐振抑制。建立15 k W的T型三电平三相光伏逆变器平台,对所提有源阻尼方法进行稳态实验,实验结果验证所提方法的可行性和正确性。  相似文献   

12.
多逆变器并网系统的谐振会导致电网中谐振频率的信号迅速放大,给电网带来不可忽视的电能质量问题,因此需要对多逆变器并网系统的谐振进行抑制。此处在己检测出谐振频率的前提下,提出了一种基于准谐振控制器的多逆变器并网系统谐振抑制方法,通过抑制逆变器输出谐振频率电流的方法,抑制多逆变器并网系统的谐振。实验结果表明,该方法能够抑制多逆变器并网系统的谐振。  相似文献   

13.
电网阻抗的存在可能引发光伏并网逆变器的谐波谐振,甚至不稳定。通过建立单相光伏并网逆变器的等效阻抗模型和等效控制模型,分析系统稳定性和谐振的关系,指出当光伏并网逆变器处于临界稳定状态时,系统由于阻抗匹配而出现谐振现象,且阻抗匹配的频率为系统开环截止频率。为降低并网电流中的谐波含量,应使光伏并网逆变器始终具有足够的稳定裕度,为此提出了"坚强的"光伏并网逆变器设计方案,且给出了详细的设计步骤。仿真和实验结果表明,所提的光伏并网逆变器能够输出较高质量的并网电流,其对电网阻抗具有很强适应性。  相似文献   

14.
该文提出一种弱电网下多逆变器并网系统的全局高频振荡抑制方法,通过引入公共耦合点(PCC)电压全局变量和并网电流高频分量到逆变器控制环节,可实现多逆变器系统的高频振荡抑制。首先,引入PCC电压的前馈构造出并联逆变器在PCC处的虚拟电阻,抑制逆变器谐波电压与电网背景谐波电压引起阻抗网络的谐波谐振;其次,引入并网电流高频分量反馈构造出并联在逆变器输出滤波电容两端的虚拟阻抗,增加逆变器自身阻尼,抑制多逆变器并联谐振。仿真和实验验证了所提高频振荡抑制方法的有效性。  相似文献   

15.
由于电网阻抗的耦合作用,基于LCL滤波器并网的光伏逆变器之间会产生并联谐振。针对多逆变器并网的谐振问题,提出了一种基于多逆变器并网闭环控制模型的有源阻尼控制策略。基于多逆变器并网拓扑,依据戴维南等效定理建立了多逆变器并网的闭环数学模型,分析了多逆变器之间的谐振机理;采用电容电流反馈构成有源阻尼以抑制并网谐振,给出了基于滤波电容电流反馈的多逆变器并网闭环控制框图;依据谐振阻尼表达式研究了有源阻尼系数对并网系统的稳态及动态特性的影响。在三台10 k W并网逆变器上进行了无阻尼环并网控制算法与加入有源阻尼环控制算法的对比实验,实验结果表明了所提出的有源阻尼控制方法的有效性和可行性。  相似文献   

16.
传统并网电流反馈有源阻尼方法(grid-currentfeedback-active-damping,GCFAD)是一种抑制LCL型并网逆变器谐振尖峰的有效方法。然而,由于数字控制下的控制延时使其等效阻尼电阻正负的分界频率介于1/6与1/3倍系统开关频率间,电网阻抗的宽范围变化极有可能造成系统无法稳定运行。对此,文中提出一种鲁棒GCFAD方法,包括并网电流的二重采样和改进型GCFAD方法。并网电流的二重采样在不引入开关纹波的情况下最大程度地降低了有源阻尼环中的控制延时;改进型GCFAD进一步提高了该分界频率与系统开关频率的比值,使得该分界频率等于0.5倍系统开关频率,位于LCL滤波器设计的谐振频率区间外,从而解决了LCL滤波器的实际谐振频率穿越该分界频率的鲁棒性问题,大大地提高了对电网阻抗的鲁棒性和系统的稳定性。仿真和实验结果验证了所提方法的有效性。  相似文献   

17.
电网阻抗不断增加,其与并网逆变器阻抗频率交截处相角会越来越低,基于电容电流反馈有源阻尼法抑制谐振尖峰可能失效,容易发生低次谐波振荡,并网逆变器趋于不稳定。从阻抗法的角度,建立LCL型单相并网逆变器系统阻抗模型,提出电网电压前馈相角提升方法,提高电网阻抗与逆变器输出阻抗频率交截处的相角达到稳定裕度的要求,采用该方法能有效提高并网逆变器系统在阻抗变化下的稳定性。  相似文献   

18.
随着越来越多的逆变器在同一公共耦合点接入弱电网,多机与电网之间的阻抗耦合作用越来越严重,可能引起高频振荡,进一步加剧系统的不稳定。该文从逆变器输出阻抗的角度出发,指出逆变器输出阻抗在振荡频率处应设计得较高,而在其他频率处应设计得较低是实现振荡抑制的基本方法。为了实现所提出的基本方法,需要增加与原逆变器输出阻抗并联和串联的2个虚拟阻抗。为此,提出一种多机并联的两带阻滤波器高频振荡抑制方法,提高系统的整体阻尼。该方法在公共耦合点电压前馈和网侧电感电流反馈中引入带阻滤波器来达到并串联虚拟阻抗的实现形式。最后,实验结果验证所提方法的有效性。  相似文献   

19.
分布式可再生能源接入配电网远端场景下,并网逆变器系统可能同时受到弱电网较大内阻抗及其背景谐波的影响,而仅优化并网逆变器的控制设计却不易有效解决这一问题。提出一种弱电网且谐波畸变背景下分布式电源并网系统谐振抑制方法。该方法将并网逆变器电网电压全前馈控制与并联接入的有源阻尼器相融合,利用前者抑制谐波电压畸变的影响,利用后者重塑并网系统的输出导纳,抑制并网系统与弱电网间的谐振。同时,给出有源阻尼器虚拟电阻阻值的设计方法以及提升并网系统的截止频率的方法。基于Matlab/Simulink的时域仿真结果表明,所设计的并网系统既能够有效抑制谐波电压畸变引发的并网电流畸变,也能够抑制因网侧导纳存在而引起的谐波谐振。  相似文献   

20.
LCL滤波器在大容量、低开关频率的并网逆变器系统中已广泛应用,但LCL容易发生谐振,特别是在多逆变器并联的新能源电力系统中。本文推导了LCL谐振的公式,根据并网电流谐振时滤波器网侧电感与电网等效电感为串联的特性,结合LCL的结构,提出采用网侧电感电压一阶微分和入网电流的双闭环控制策略,在不增加传感器数量条件下,网侧电感电压一阶微分反馈内环增加了系统阻尼,有效抑制了LCL的谐振;电流外环实现了对入网电流的直接控制,可保证较高的功率因数,提高逆变器的利用效率。与电容电流反馈控制的仿真对比结果表明,该控制策略在逆变器并网的环境中有更好的抑制电流谐振的效果,实现对并网电流质量的改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号