首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对独立运行的直流微电网,提出基于多组储能系统动态调节的协调控制策略。孤岛运行模式下,分布式电源采用最大功率点跟踪(MPPT)控制,并选择配置多组储能来维持母线电压稳定。通过设计带有电压前馈补偿的模糊下垂控制动态调整负荷功率分配,实现不同储能单元荷电状态(SOC)的快速均衡,保证多组储能单元之间的协调运行,并可减小母线电压波动。当储能系统因满充等原因退出运行后,分布式电源由MPPT控制切换为下垂控制,并根据自身的最大功率自动调整负荷功率分配,确保重要负荷正常供电和微电网的安全运行。同时,在分布式电源下垂控制器的功率环节增加前馈补偿控制,减小该模式下母线电压波动。利用MATLAB/Simulink搭建仿真模型,仿真结果表明所提的控制策略可有效减小电压波动并能实现独立直流微电网稳定运行。  相似文献   

2.
针对多源储结构的独立直流微电网,提出考虑多储能系统功率分配的独立直流微电网协调控制策略,以实现源储能源利用率最大化与多储能系统间功率合理分配两方面的平衡控制,提升微网持续供电能力.根据直流母线电压信号将微网系统运行划分为5种工作模式,以协调源储运行,保证光伏能源利用率最大化及储能系统出力充足.同时,直流微电网工作模式切...  相似文献   

3.
为延长多储能单元运行寿命,提升微电网调度灵活性,提出了一种基于荷电状态(SOC)分级的直流微电网协调控制方法。在传统功率分层的基础上,根据储能单元的实时SOC值进行优先级划分,通过比较微电网扰动功率与特定优先级最大平抑功率的关系使相应优先级的储能单元分级投入运行。在此基础上,设计带电压前馈补偿环节的改进e指数下垂控制,在保证直流母线电压质量的同时使储能单元的SOC逐渐收敛。最后,基于MATLAB/Simulink平台搭建了模型。仿真结果表明,该控制方法能有效避免储能单元过度充放电,减少储能单元的充放电时长与次数,提升微电网的调度灵活性与运行经济性。  相似文献   

4.
储能系统采用串并联结构(串联的储能单元为一组,多组并联)可以实现将小容量、低电压等级的储能接入直流微电网中,并且可以实现系统扩容和提高端电压。为避免串并联结构的储能单元因荷电状态(state of charge,SOC)和额定容量差别导致个别储能单元提前退运的短板效应,提出一种考虑储能SOC和额定容量的控制方法,实现串联模块间的电压和并联模块间的功率合理分配。考虑到功率分配后期因储能单元间SOC差别较小导致均衡速度较慢的问题,引入变异系数对下垂系数进行动态优化。考虑到升压或扩容导致各组总容量不同,引入容量权重因子,使储能单元SOC达到均衡出力。通过搭建MATLAB/SIMULINK仿真模型,验证控制策略的可行性和有效性。  相似文献   

5.
为了对直流微电网集群进行协调控制并对其进行能量管理,提出一种多状态运行分级协调控制策略.该策略采用子微电网设备级控制与集群系统级控制的两级分级方式,在保证本微电网正常运行前提下利用分布式一致性算法控制集群微电网母线电压,并利用直流区域控制误差控制方法控制集群联络线功率.集群运行根据网内储能单元荷电状态值划分为多个运行状...  相似文献   

6.
提出了一种含混合储能的独立微电网多时间尺度协调控制策略。该控制策略采用“日前优化+日内滚动+实时控制”的方式,对各发电机组的启停和出力计划、负荷投切计划和储能系统的控制进行决策,并且不断修正。该策略可以有效地减轻预测误差带来的影响,从而提高含混合储能的独立微电网运行的稳定性与经济性。  相似文献   

7.
独立光储直流微电网分层协调控制   总被引:3,自引:0,他引:3       下载免费PDF全文
针对独立运行的光储直流微电网,提出分层协调控制策略。第一层控制光伏和储能系统等单元独立运行,且各单元变流器可依次对母线电压进行自动调节。采用自适应下垂控制协调多组储能来稳定母线电压并根据最大功率和荷电状态自动协调不同储能电池之间的负荷功率分配。当独立直流微电网中所需储能系统充电功率超过其最大允许功率时,光伏系统由最大功率跟踪控制切换为下垂模式控制母线电压稳定,且不同光伏单元可根据各自最大功率自动分配负荷功率,同时采用电压前馈补偿控制动态调整下垂控制器的参考电压将母线电压提升至额定值。为了提高运行效率并增强直流母线电压的稳定性,第二层控制根据母线电压协调不同变流器的工作方式,确保不同工作模式下均有变流器根据电压下垂特性控制直流电压来维持系统内的有功功率平衡。最后在Matlab/Simulink搭建仿真模块,分别验证在三种不同工作模式下所设计分层控制策略的有效性。仿真结果表明,该分层控制可实现独立直流微电网的稳定运行。  相似文献   

8.
直流对等式微电网混合储能系统协调控制策略   总被引:1,自引:0,他引:1  
提出一种基于锂离子电池和超级电容混合储能的协调控制策略,使得混合储能系统(HESS)适用于风能、太阳能或者其他间歇式分布式电源供电的微电网。针对锂离子电池和超级电容的放电特性,提出DC-DC侧对等式并行双环控制策略,控制直流母线电压稳定的同时,利用控制环路自身带宽滤波特性及交流功率前馈达到功率分配效果;采用滞环PI控制方法,保证超级电容不会过放或者过充。DC-AC侧采用双同步坐标系下不平衡电流控制结构,有效跟踪不平衡参考电流。实验结果表明,所提出的协调控制策略能有效抑制直流母线电压冲击与波动,显著提高了系统动态响应;同时,超级电容利用效率得到提高,微电网在过渡状态下的性能也得到了改善。  相似文献   

9.
为了稳定双极性直流微电网中由于分布式电源和负荷接入导致的功率波动,提出一种适用于双极性直流微电网的混合储能系统(HESS)控制策略。首先,根据双极性直流母线特点,设计了双超级电容-锂电池混合储能架构;再由双超级电容器运行状态关系,以级联控制方式协调锂电池与电压平衡器工作,分别平滑锂电池输出电流,以减少电压平衡器频繁动作次数;同时,通过整定双母线电压参考值来调整双超级电容的自适应下垂曲线。实验结果表明:锂电池和电压平衡器能够对双超级电容运行状态做出正确响应;该控制策略可将各电压等级母线电压有效维持在允许波动范围之内,且实现双母线之间的多能互补。因此,所提制策略可进一步提高双极性直流微电网的电能质量和改善系统的工作效率。  相似文献   

10.
随着分布式发电单元的不断接入,直流微电网逐渐呈现出低惯性和弱阻尼特性,直流母线电压会随着功率扰动而发生突变或失稳。采用变下垂控制为系统提供虚拟惯性。通过根轨迹分析可知变下垂控制为系统提供虚拟惯性的同时会削弱系统的阻尼,使直流微电网出现持续振荡的风险。在此基础上,设计一种虚拟惯性与阻尼的自适应协调控制策略。其控制函数以电压为自变量,在大扰动和小扰动情况下,能够为系统提供虚拟惯性和有源阻尼,从而改善直流微电网的低惯性和弱阻尼特性,保证系统的安全稳定运行。通过在Matlab/Simulink仿真平台上搭建直流微电网模型,验证了所提协调控制策略的有效性。  相似文献   

11.
由于各种可再生能源接入渗透率不断提高,互联直流微电网作为一种新型多微电网集群架构,受到了广泛关注。针对互联直流微电网对系统电压稳定以及自主功率分配的要求,考虑到储能虚拟容量和变流器容量限制,提出一种基于电压分区的互联直流微电网多模式协调控制策略。该策略首先在分析互联直流微电网结构的基础上,考虑分布式电源和负荷的波动,将系统调压模式分为并网调压和自治调压。其次在并网和离网状态下,通过实时监测直流电压信息,保障系统各单元在不同电压分区之间的平滑切换,并通过自适应下垂控制实现自主功率均衡分配,满足系统对各单元即插即用的要求。最后利用PSCAD/EMTDC验证了不同运行状态下系统协调控制策略的有效性。  相似文献   

12.
直流微电网系统中的分布式能源具有间歇性和不稳定性,其中普遍接入了储能设备,起到平衡光伏和负载功率,稳定直流母线电压等作用。传统的解决方案多用下垂控制调节系统功率平衡,但会引起一定的电压降,不但影响系统调节范围,而且多储能设备并联时会引起环流等损耗。设计自适应调节下垂系数的双向DC/DC变换器,通过直流母线电压信号,在欠功率时提供功率,功率溢出时吸收功率,并维持电压恒定。实现直流微电网运行中对储能系统分布式优化控制。通过实验完成了上述控制目标,验证了控制策略的有效性。  相似文献   

13.
针对直流微电网中光伏发电单元出力的波动性和间歇性造成系统内部功率不平衡的问题,混合储能系统可以同时发挥蓄电池高能量密度和超级电容高功率密度的优势,根据直流母线电压进行混合储能单元间的协调控制策略。该策略将直流母线电压进行分层控制,采用四个电压阈值共分成五个控制区域,以直流母线电压为信息载体,决定储能系统的运行状态,实现对混合储能单元的充电、放电模式间自主切换。电压分层控制有效地避免了蓄电池由于电压波动而频繁进行充放电切换,从而延长了电池的使用寿命。最后,MATLAB/Simulink的仿真结果验证了所提控制策略的可行性。  相似文献   

14.
双母线直流(direct current, DC)微电网采用传统的下垂控制时,存在电压控制性能与功率分配精度的局限性。为此,提出一种考虑储能荷电状态(state of charge, SOC)均衡的电压和功率协调控制策略。首先,对于高压或低压侧母线电压稳定和功率分配问题,在电压/电流双环控制策略的基础上,采用基于SOC幂指数的自适应系数动态改变功率分配比例,对电压和功率进行精确控制。其次,针对双直流母线由于功率不平衡造成的电压偏移问题,根据双侧直流母线电压差以及高/低侧的工作模式,制定高/低压母线之间DC/DC变换器的控制策略,保证高/低压侧功率平衡和电压稳定。最后,利用Matlab/Simulink软件建立不同工况下双母线直流微电网模型,并进行仿真验证。仿真结果表明,所提出的控制策略可改善功率分配和电压控制精度,使各储能SOC趋于一致,同时实现高/低压直流母线之间功率相互支撑。  相似文献   

15.
针对计及通信时延的直流微电网分布式储能系统多储能单元之间的协调问题,提出了一种模型预测控制策略。首先搭建多储能单元状态空间模型,设计多储能单元的模型预测控制及其电流期望轨迹。然后分析计及通信时延的一致性规律,补偿时延引起的荷电状态偏差。进而通过求解以快速跟踪电流动态期望值及控制信号变化最小为目标函数的最优解,保证系统直流母线电压稳定,实现各储能单元间协调稳定运行以及基于荷电状态的动态一致均衡。最后利用Matlab/Simulink仿真平台,验证所提控制策略在计及通信时延的情况下储能充、放电过程以及源、荷波动下的有效性和稳定性。  相似文献   

16.
直流微电网因其控制策略简单、安装灵活,现今逐步得到广泛应用.在分析双有源桥隔离型DC-DC变换器工作原理和控制策略的基础上,由于多变换器到直流母线公共节点之间存在一定的线缆阻抗,这将导致直流母线电压和多储能单元间的功率分配产生偏差,同时无法实现多储能单元间按照SOC值进行功率分配,文中提出了基于电压偏差补偿器和功率分配精度补偿器的改进下垂控制策略,以实现功率均分和电压无差调节.通过实验验证该控制策略适用于多储能变换器构成的直流微电网系统间的功率分配.  相似文献   

17.
朱晓荣  蔡杰 《现代电力》2016,33(2):13-21
下垂控制在直流微网中的应用越来越广泛。但是下垂特性以及直流母线电阻的存在,使得节点电压偏离额定值且影响系统的负荷分配。为充分发挥直流微电网中储能系统的作用,本文提出了多储能系统直流微电网的分布式控制策略。该控制策略在传统V-I下垂控制策略的基础上加入了平均电压控制环节和功率协调控制环节。两环节通过一致性算法仅仅需要交换相邻两节点的信息,构建一个稀疏的信息交流网络,就能补偿下垂控制造成的电压偏移,且负荷能够按照不同储能系统的荷电状态来分配。针对上述所提的控制策略,本文首先对含两储能系统的直流微电网进行了小干扰稳定性分析。然后在MATLAB/SIMULINK中搭建了含三储能系统的直流微电网模型,通过时域仿真验证了所提控制策略的有效性。  相似文献   

18.
以含有多个混合储能系统(HESS)的孤岛型直流微电网为研究对象,提出一种基于事件触发机制的HESS分层协调控制方法。底层采用虚拟电阻下垂控制,利用低通滤波器实现HESS内部蓄电池和超级电容的功率分配,并通过制定基于荷电状态(SOC)的控制策略实现HESS间的协调安全运行。分布式控制层则利用稀疏通信网络对各HESS的平均电压和比例电流进行调控,以改善由于虚拟电阻和线路电阻导致的母线电压偏差较大和功率分配精度差的问题。在以上研究基础上,提出一种建立在周期性通信机制上的事件触发控制方法,利用Lyapunov稳定理论详细介绍事件触发函数的推导过程,并通过设定触发函数的预判阈值,进一步减少系统稳态运行时的通信次数。最后,利用Matlab/Simulink仿真分析验证了所提方法的有效性。  相似文献   

19.
针对独立运行的直流微电网,提出了一种适用于含光伏和储能的分层分布式协调控制策略。多个储能单元采用分层控制方法以维持直流母线电压的稳定,第1层控制采用适应性下垂控制方法,下垂系数可根据储能电荷状态和额定功率进行自适应调整以平衡蓄电池的荷电状态;第2层控制采用基于离散一致性算法的二次电压恢复和电流均分控制,仅通过与邻居节点间的通信实现母线电压调节和电流均分。为实现储能和光伏协调控制,光伏单元不仅能自动改变控制模式以保证直流微电网功率平衡,还能根据储能单元运行状态参与直流母线电压的二次调节,使直流母线电压恢复到额定值附近。最后,通过实验验证了所提控制策略的有效性。  相似文献   

20.
针对独立运行直流微电网,提出了含负荷功率自动分配的协调控制策略。孤岛运行状态下,直流微电网需独自承担系统电压稳定,为此采用多组小容量储能单元平衡分布式电源(DG)和负荷功率从而控制母线电压稳定。同时,为了避免储能系统过充和过放以及降低对通讯的依赖程度,根据各储能单元的荷电状态(SOC)和最大功率设计自适应下垂控制自动协调不同储能单元之间的负荷功率分配,可减小电压波动。当储能系统充电功率超过其最大允许功率或满充时,不同DG单元根据各自最大输出功率由最大功率跟踪控制(MPPT)切换为带有电压前馈补偿的下垂控制模式稳定母线电压和自动分配负荷功率,并考虑各单元的输出阻抗来提高分配精度。最后利用Matlab/Simulink对所设计的控制策略在不同运行模式下进行仿真验证,仿真结果表明所提出的控制策略可协调不同模式下独立直流微电网稳定运行和实现负荷功率自动分配。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号