首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为考察形状记忆聚合物(SMPs)的有限应变力学特性,将SMPs材料的弹性响应采用Neo-Hookean超弹性本构方程描述,黏性响应采用Prony级数描述,从经典遗传积分形式的黏弹性本构方程出发,推导出有限应变格式的黏弹性本构方程和相应的材料参数拟合公式.采用环氧基形状记忆树脂(ESMP)进行拉伸-松弛试验,利用推导的公式进行非线性拟合得到本构方程的参数.对不同温度下ESMP的黏弹性力学特性进行试验研究,表明在试验温度范围内随温度升高ESMP的初始模量降低,初始模量中黏性部分所占比例降低,但弹性部分模量值基本不变.针对三维的SMPs结构分析问题,基于所推导本构,应用ABAQUS软件建立数值模拟方法.对拉伸-松弛试验进行数值模拟,结果表明所推导的本构方程用于SMPs的大应变分析中具有较高准确性.此外,所推导的有限应变黏弹性本构方程及参数拟合公式也适用于具有黏弹性特点的其他各向同性高聚物.  相似文献   

2.
为了描述加热型裂缝密封胶在低温条件下的应力-应变本构关系,以标准线性固体模型为基础,利用玻尔兹曼叠加原理对密封胶在拉伸-松弛过程中的力学行为进行分析,建立密封胶拉伸-松弛阶段的理论方程.采用ASTM D5329的粘结试验方法,选择6种加热型密封胶进行常应变拉伸-应力松弛试验,3种应变量分别为2.25 mm、3.75 mm和6.90 mm,采用标准线性固体模型拟合试验数据,求得拉伸和应力松弛回归方程.实验结果表明,标准线性固体模型可以较理想地拟合密封胶在低温条件下的黏弹性力学行为,应变量越小,模型的拟合精度越高.  相似文献   

3.
TC4合金广泛应用于高温环境下,基于TC4合金的单轴蠕变试验和高温拉伸试验研究了其高温下的黏塑性本构模型。提出一种不统一的考虑损伤的黏塑性本构模型,将非弹性应变分解为蠕变应变和塑性应变两部分,蠕变应变采用多轴延性耗竭模型计算,塑性应变通过考虑损伤和随动硬化的屈服函数计算,并推导了该模型的有限元隐式积分算法和一致切向模量。使用遗传算法确定了该模型所需的材料参数,通过Abaqus有限元软件的UMAT子程序将该模型进行编程并采用三维八节点等参单元进行计算。由计算结果可知,该模型可以有效地预测TC4合金蠕变曲线的3个阶段以及高温拉伸过程中的软化阶段。  相似文献   

4.

为了研究橡胶结构的动态响应,需要准确建立本构模型.通过动态热机械分析仪(dynamic thermomechanical analysis,DMA)测试圆盘形橡胶试样,获得橡胶黏弹因子、储能模量、损耗模量等力学数据,建立超弹-黏弹本构模型,超弹模型表征橡胶的大变形特性,黏弹模型表征橡胶的滞后效应,其中黏弹模型参数是通过利用ANSYS拟合DMA实验所得松弛曲线数据获得,超弹模型参数是通过利用经验公式辨识得到.建立与实验条件一致的动力学仿真模型,实验数据与仿真数据的误差较小,在合理范围内,验证了通过上述方法辨识模型参数所建立超弹-黏弹本构模型的正确性.仿真获得了圆盘形橡胶试样、立方块橡胶试样分别在周期性扭转载荷和垂直载荷作用下的应力、应变、损耗等响应特性,并验证了所建立本构模型的适用性.通过研究立方块橡胶试样在超弹-黏弹本构模型、线弹-黏弹本构模型、单一的超弹本构模型下的动态响应特性,表明了本构模型的选择对橡胶结构动态响应分析的重要性,为工程实际问题中橡胶本构模型的选择提供参考.

  相似文献   

5.
为了获得能够描述形状记忆NiTi合金相变和塑性行为的本构关系,基于不可逆热力学,假设两个内变量,分别推导了相变演化规律和塑性演化规律,以及NiTi合金本构模型的主控方程。将导出的本构方程写成一维的增量形式,编制FORTRAN程序,将本构模型进行了程序实现。结合单轴加载的实验曲线、非线性拟合的方法确定该本构模型的相关参数。比较实验结果,验证了该本构模型的合理性。该模型能很好地描述随着载荷不断增加,NiTi合金表现出的母相弹性、马氏体相变、马氏体弹性以及马氏体塑性流动行为,同时,对于应变率效应也能够较为理想地描述。所建立宏观唯象本构模型,参数易确定,为NiTi合金在更加苛刻、极端的环境下的工程应用打下基础。  相似文献   

6.
为了预测形状记忆聚氨酯的力学性能,为材料的设计和制备提供理论依据,借鉴聚合物在外力作用下发生强迫高弹形变的理论,假设形状记忆聚氨酯在外力作用下发生了从初始相到激活相的转变;用Maxwell模型表示初始相,非线性弹簧表示激活相,采用并联的形式组成一个三元件模型。在温度变化过程中,模量随温度的变化规律采用WLF方程表示,而链段运动活化能随温度的演变规律采用一个分段函数描述,构建带有温度场的应力应变本构方程。结果表明,构建的本构方程的理论预测与实验结果有良好的一致性。  相似文献   

7.
目的研究沥青混凝土路面在行车和温度荷载作用下的松弛特性,更好地做到防裂控制工作.方法确定黏弹性材料参数及能够反应温度、沥青混合料黏弹性本构关系,建立典型的路面结构三维有限元模型,模拟面层材料在不同初始变形的应力状态,分析路表弯沉、沥青面层层底和土基顶面的响应.结果沥青路面在荷栽和温度作用下,面层黏弹性材料会使路面应力减小.面层层底和基层层底应力会发生松弛,最后趋于稳定值;在行车载荷作用下弯沉会随着时间的推移发生回弹,最后逐渐趋于稳定.结论松弛是材料本身属性与其他因素无关;应力松弛模量越小,松弛性能越好,低温抗裂性越好.  相似文献   

8.
目的建立混凝土单轴拉伸和压缩应力-应变方程.方法基于混凝土单轴拉伸和压缩的试验数据,研究应力-应变变化规律,抛弃传统的拟合方法,直接由混凝土基本性能(初始弹性模量、峰值应力、峰值应变和应变软化性态)导出应力-应变方程.结果全程应力-应变方程由强化方程和软化方程给出,在峰值应力之前,强化方程为单调增且二阶导数为负的曲线,与试验结果曲线相符.在峰值应力之后,用不同的软化方程表示试验软化曲线.结论笔者提出的混凝土本构方程与很多实验数据相符,方程中的参数具有明显的力学意义,形式简单,便于理解,能很好的应用于混凝土本构关系的研究中.  相似文献   

9.
三维变温粘弹性本构方程已经建立,方程中终态温度等效松弛模量曲线G1(t)、G2(t)是计算中至关重要的反应材料性质的曲线.它们可由扭转、单向拉伸的外态温度等效松弛模量曲线确定.后两条曲线分别由相应一族变温的扭转、单向拉伸的松弛模量曲线确定.由于实验很难做出变温松弛曲线,因此,本文在文[1]的基础上给出了利用恒温下的扭转、单轴拉伸应力松弛实验曲线确定终态温度等效松弛模量曲线G1(t)、G2(t)、的方法.  相似文献   

10.
变温粘弹性终态温度等效松弛模量曲线的确定   总被引:1,自引:0,他引:1  
三维变温粘弹性本构方程已经建立,方程中终态温度等效松模量曲线G1(t)、G2(t)是计算中至关重要的反应材料性质的曲线。它们可由扭转、单向拉伸的终态温度等效松弛模量曲线确定,后两条曲线分别由相应一族变温的扭转、单向拉伸的松弛模量曲线确定,由于实验很难做出变温松弛曲线,因此,本文在文(1)的基础上给出了利用恒温下的扭转,单轴拉伸应力松弛实验曲线确定终态温度等效松弛模量曲线G1(t)、G2(t)的方法  相似文献   

11.
率敏感材料Ⅰ型准静态扩展裂纹尖端的弹黏塑性分析   总被引:1,自引:0,他引:1  
采用率敏感型本构关系,对不可压缩材料平面应变Ⅰ型准静态扩展裂纹的尖端场进行了渐近分析.引入Airy应力函数,求出了裂纹尖端应力和应变场的控制方程.并对其作渐近分析,推导出了该模型下的本构方程.选取适当的特征参数,给出了边界条件,对控制方程通过双参数打靶进行了数值计算,求得了裂纹尖端的应力应变场.计算结果表明,裂纹尖端的应力和应变均具有r-δ的奇异性,整个裂纹尖端场是由黏塑性区控制,不存在弹性卸载区.  相似文献   

12.
为了解沥青砂的复杂力学行为,给沥青混合料细观力学研究提供数据支持,将几种沥青混合料的配合比转变为沥青砂的配比,采用自主研发的沥青砂成型装置及流变仪夹具获取沥青砂的动态剪切蠕变曲线,基于Burgers模型对蠕变曲线进行拟合,获取动态剪切荷载下沥青砂的黏弹性参数,分析黏弹性参数及松弛模量的变化规律。试验结果显示,Burgers模型对沥青砂动态剪切蠕变曲线具有较好的拟合效果。相同加载时间内,相比于AC-20级配沥青混合料,SMA-16级配沥青混合料蠕变变形量更大。橡胶沥青砂的抗剪切蠕变性能最优。沥青砂蠕变变形影响规律与混合料车辙变形一般影响规律相符。试验温度、沥青用量、沥青种类和级配类型均对沥青砂的黏弹性参数和松弛模量影响显著。  相似文献   

13.
采用简单性能试验机对废橡胶裂解炭黑(PCB)改性沥青混合料进行了动态模量试验,研究了不同温度与荷载频率对其动态模量和相位角的影响.通过数值分析方法,拟合了PCB改性沥青混合料的动态模量和相位角主曲线,分析了PCB对沥青混合料黏弹特性的影响.结果表明,PCB改性沥青混合料的动态模量和相位角依赖于温度和荷载频率的变化:低温和高频时,PCB的加入使得沥青混合料的动态模量明显增大,相位角明显减小,弹性特征增强,黏性特征减弱;高温和低频时,PCB对沥青混合料黏弹性的影响不明显.  相似文献   

14.
为了分析微孔聚氨酯弹性材料的力学性能,分别对微孔聚氨酯弹性材料式样进行了拉伸和压缩试验;再利用拉伸与压缩试验数据对常见的经典超弹本构模型进行拟合,得出了相应的本构模型参数;通过误差分析对各种本构模型在不同应变条件下的适用性进行了分析探讨;最后,用拟合出的本构参数对高铁轨道用WJ-8扣件的微孔聚氨酯弹性垫板的静刚度进行数值模拟,有限元仿真结果与产品试验结果进行对比,说明了Yeoh模型、Van der Waals模型和Ogden N=3模型的预测值与试验值的相对误差分别为8.44%,7.83%和5.93%,Ogden N=3模型相对于其他模型具有更高的预测精度。  相似文献   

15.
为了在本构模型中同时考虑岩石材料和多孔岩石的非线性和不可逆变形,提出非饱和多孔岩石工程力学理论.应用体积分数概念和混合物理论,凭借均匀化响应原理,获得由孔隙应变张量、饱和度和各组分材料体应变5个状态变量表示的能量平衡方程.利用自由能确定的5个弹性方程,加上体积分数之和等于1这个方程组成6个本构方程.根据这些方程可以求解非饱和岩石本构模型的全部6个未知变量(3个位移矢量和3个体积分数).根据不可逆热力学理论,基于熵产公式提出用内变量表示的耗散率势函数,获得能够反映黏性和塑性不可逆变形特性的耗散本构方程.结果表明,自由能和耗散率2个势函数分别反映了岩石弹性和非弹性变形规律,共同构成了非饱和多孔岩石的热力学本构理论框架.  相似文献   

16.
形状记忆合金复合梁的振动特性   总被引:1,自引:0,他引:1  
针对复合梁的振动特性问题,利用已有的形状记忆合金(SMA)细观力学本构模型、复合材料力学和振动理论,推导了嵌入SMA的复合梁内SMA的恢复力公式,建立了描述该复合梁的应力、应变及温度间关系的力学本构方程和其固有频率和温度间关系的频率方程.应用SMA的恢复力公式、复合梁力学本构方程及频率方程研究了嵌入SMA复合梁的固有频...  相似文献   

17.
基于有限变形的基本理论,对基本载荷作用下橡胶类材料的超弹性力学性能进行了分析.在高玉臣所提出的橡胶类材料的本构模型的基础上,给出了1种新的不可压缩超弹性应变能函数.引入参数α,当n=1且α=1时,新模型转化为Mooney-Rivlin模型,而当n=1且α=0时,新模型转化为Neo-Hookean模型.利用新的本构关系对橡胶类材料在单轴拉伸以及受内压膨胀2种基本载荷作用下的超弹性力学性能进行了研究,分析了本构参数对单轴拉伸和内压膨胀的影响,指出本构参数n为材料的强化参数,橡胶圆管受内压膨胀时存在失稳现象,其稳定性不仅依赖于本构参数n而且与本构参数α相关.  相似文献   

18.
选择3种级配的沥青混合料进行不同温度和应力水平的蠕变试验,根据应力应变关系得到的蠕变柔量曲线获取Burgers黏弹性模型参数,分析温度、应力水平、矿料级配以及老化作用对沥青混合料黏弹性的影响.结果表明,随着温度的升高,3种沥青混合料的E1、η1、E2、η24个参数总体不断降低,即沥青混合料软化、模量减小,但不同温度下3种混合料的黏弹性参数排序并不相同;应力水平对沥青混合料的黏弹性能有显著影响,处于中间荷载水平0.5 MPa时4个黏弹性参数的区分度最大,但不同级配的沥青混合料对应力水平的响应存在差异,公称最大粒径相近的混合料的某些黏弹性参数变化趋势较一致;老化是沥青混合料黏弹性变化的重要原因,但短期老化和长期老化的影响并不相同.  相似文献   

19.
在地下工程的中尤其深部工程,地应力是指导开挖的重要参数之一,因此,地应力测量工作至关重要.CSIRO地应力测量法是国际岩石力学学会推荐的地应力测量方法之一.针对三山岛金矿深部巷道近千米花岗岩钻机取芯,精密加工成标准圆柱试件,进行单、三轴压缩试验,获取霍克布朗-准则强度准则曲线,重点设计单岩样多围压阶梯弹性段加载试验.通过试验数据计算获得岩石弹性模量和泊松比等物理力学参数,引入体积模量K和剪切模量G等变形参量,且随平均应力不断增大成非线性变化的关系,应用双曲线函数模型建立变形参量与平均应力的本构关系■.公式中K_0/G_0为初始变形模量,K_0/G_0+1/a为平均应力无限大时趋近值,1/b为变形模量初始增长率,三参数都具有明确的物理意义.基于此公式推导考虑岩石非线弹性变形特征的CSIRO地应力测量法中高压双轴公式,通过三山岛金矿深部花岗岩解除岩芯高压双轴加载试验验证此公式的适用性.  相似文献   

20.
针对目前关于形状记忆聚合物热力学性能研究不足,本文对一种新研制的环氧形状记忆聚合物开展了三类热力学试验。首先进行了SMP拉伸、弯曲、扭转形变下的形状记忆自由回复试验,测定了形状记忆固定率与回复率,均可达到99. 4%以上;采用热分析仪测定了材料-50℃~100℃的热膨胀应变随温度的关系,其值呈近似双线性,在玻璃转换点前后分别为4. 8×10~(-5)℃和2. 76×10~(-4)℃;最后进行了不同温度时的拉伸应力松弛试验及其不同加载速率拉伸试验,结果表明:在玻璃化转变温度附近,材料弹性模量与应力松弛现象发生明显的改变,形状记忆聚合物具有较强的时温相关非线性粘弹塑性力学行为特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号