首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
摇摆状态下窄矩形通道内两相流流型特性研究   总被引:6,自引:6,他引:0  
以空气和水为工质,在40mm×1.6mm的窄矩形通道内对竖直状态和摇摆状态下两相流流型进行了研究。流型由拍摄照片辨别,实验通道内观察到的流型有泡状流、弹状流、搅混流和环状流,绘制出窄矩形通道内的流型图,并与常规尺寸圆管内两相流型进行了对比。摇摆对窄矩形通道内流型的影响与常规尺寸圆管相似,但由于狭小空间的限制及表面张力的作用,摇摆对两相流动并无明显影响。  相似文献   

2.
矩形窄缝通道内水沸腾流型理论研究   总被引:2,自引:1,他引:1  
对矩形窄缝通道(1×20mm,2×20mm)中水沸腾的汽液两相流动流型转化准则进行了研究。根据实验结果,水平矩形窄缝加热通道中流型可以分为泡状流、间歇弹状流、搅拌流、环状流和汽液分离流。运用分相流模型对矩形窄缝通道中水沸腾的汽液两相流动流型进行了理论分析,得出了相应的流型转换准则,并与实验数据进行了初步比较,符合较好。  相似文献   

3.
竖直窄矩形通道气液两相流流型识别研究   总被引:1,自引:1,他引:0  
在实验研究的基础上,采用小波分析的方法对窄矩形通道内两相流的流型进行有效的识别,为在不可视或不能进行摄影测试技术特殊情况下提供了有效识别方法。通过可视化观察发现,窄矩形通道内两相流流型主要有泡状流、弹状流、搅混流和环状流。采用小波分析法给出了4种流型的功率密度图,并结合每种流型的特征及压差波动特性,对每种流型的频率分布范围及最大能量分布范围给出了界定。因此,利用频率分布特征值及最大能量分布值可对流型进行有效的识别和判定。  相似文献   

4.
单面加热矩形窄缝通道流型可视化研究   总被引:4,自引:2,他引:2  
针对截面为40 mm×3 mm的竖直矩形窄缝通道,在低压以及入口温度过冷的条件下,对水流动沸腾的流型特征进行了可视化实验观察。观察到弥散泡状流、合并汽泡流、搅拌流和环状流4种流型;获得了矩形窄缝通道内流型的二维可视化图像,为流型的确认提供了直观的依据;对实验数据进行了初步分析,绘制了单面加热矩形窄缝通道内水流动沸腾的流型图。将本实验数据与现有的典型流型图进行了初步的对比分析,结果表明加热蒸汽-水的流型及其转变规律与绝热空气-水的差异明显。  相似文献   

5.
根据窄间隙矩形通道的流道结构特点,参考圆管环状流临界热流密度(CHF)预测解析模型,得到了可以预测间隙厚度不小于0.5mm的窄间隙矩形通道内发生沸腾两相流环状流时的CHF解析模型。计算表明,当窄间隙矩形通道的进口截面宽度与间隙厚度比为25~85时,通道内的CHF值强化比较明显。根据汽-液两相介质的特点,推导出了在沸腾两相流系统中发生CHF时的传热强化判定准则。分析计算表明,这个判定准则是合理的,传热强化较好的进口截面宽度与间隙厚度比为45~75。综合两者的计算结果,窄间隙矩形通道内传热强化的参考进口截面宽度与间隙厚度比为45~75。  相似文献   

6.
空泡份额和界面浓度是两相流动中重要的相界面参数,准确获取窄矩形通道内搅混流和环状流工况下空泡份额和界面浓度是构建和完善两流体模型的关键。本文针对横截面为65 mm×2 mm的矩形通道开展了气液两相流动特性可视化实验研究,气相折算速度jg=1~9 m/s,液相折算速度jf=0.1~1.5 m/s,流型包含搅混流和环状流。提出了基于高速摄像法获取搅混流和环状流下空泡份额和界面浓度的分析计算方法,利用该方法所得空泡份额与窄矩形通道内经验关系式计算值的相对偏差约在10%以内。此计算方法可为研究复杂流型下窄矩形通道内的相界面参数提供理论依据。  相似文献   

7.
竖直窄矩形通道内弹状流中液膜特性研究   总被引:1,自引:1,他引:0  
气液两相弹状流广泛存在于工程领域,弹状流中液膜特性对弹状流模型的建立具有重要意义。为此利用高速摄像系统,对竖直窄矩形通道(3.25 mm×40 mm)内弹状流中液膜进行了可视化研究。实验中发现窄矩形通道中气弹左右两侧窄边液膜厚度不等且存在波动,但其对两侧液膜速度影响较小,两侧液膜速度相等。液膜脱离厚度主要受两相流速及气弹长度影响。液膜脱离速度随液相折算速度增加而增大;在低液相流速时,随气相折算速度增加而减小;当液相流速≥1.204 m/s时,液膜不下落,液膜脱离速度随气相速度变化较小,主要受液相流速影响。  相似文献   

8.
在两相流系统中,流型影响系统的摩擦阻力和传热等特性,准确判定不同流型对于两相流的计算具有重要意义。对于窄缝通道内的气液两相流动,特别是矩形窄缝通道内流型转变准则,已有学者进行了一定的实验研究,但由于实验装置及工况的限制,目前尚缺乏统一且适用性较广的流型转变准则,已有的基于矩形通道的流型判定准则适用性也有待于进一步评估。本文以空气-水为工质,对竖直矩形窄缝通道内泡状流-弹状流流型转变准则进行分析研究,基于1 168个流型实验数据,采用分界成功率对已有转变准则对于实验数据的适用性进行定量综合评价,并针对流型转变原理开展理论分析,引入无量纲数约束因子Co,建立考虑工质物性和流道尺寸、精度更高、适用范围更广的窄缝通道内泡状流-弹状流流型转变准则。本文结论可为反应堆换热元件和紧凑式换热器设计计算提供依据。  相似文献   

9.
本文以去离子水为实验介质,对截面为3 mm×43 mm的三面加热窄矩形通道内充分发展的弹状流进行实验研究。借助高速摄影仪对弹状流进行可视化实验观察,观察到弹状流的4种演变行为:弹状流充分发展、夹心型弹状流的形成、小汽弹合并成大汽弹、大汽弹合并成加长型弹状流。分析了部分热工参数对弹状流截面含气率的影响,通过引入雷诺数,对三面加热窄矩形通道内弹状流的实验数据进行非线性回归分析,得到适用于三面加热窄矩形通道内弹状流截面含气率的计算关系式。结果表明,新拟合得到的关系式能较准确地预测三面加热窄矩形通道内弹状流的截面含气率,其预测值相对误差为12.36%。  相似文献   

10.
以空气和水为工质,应用高速摄像仪,对竖直窄矩形通道(3.25 mm×40 mm)内气液两相弹状流进行了可视化实验研究。气、液相表观速度分别为0.1~2.51 m/s和0.16~2.62 m/s,工作压力为常压。实验中发现窄矩形通道内弹状流与圆管中存在较大差别,气弹多发生变形,高液相流速时变形更为严重。窄边液膜含气量较高,在高液相流速时窄边液膜不下落,宽边液膜中含有由气弹头部进入和气弹尾部进入的气泡。气弹速度受气弹头部形状和宽度影响较大,受气弹长度影响较小。气弹速度可由Ishii & Jones-Zuber模型计算,但在低液相折算速度时偏差较大,其主要原因为漂移速度计算值较实验值偏小。  相似文献   

11.
以去离子水为工质,对截面为3 mm×43 mm的三面加热窄矩形通道内流型转化过程进行可视化实验研究。借助高速摄影仪记录可视化数据,观察到泡状流、弹状流、搅拌流和气膜塞状流等4种主要流型,并详细描述了各种流型发生时通道内气泡转化的过程。记录不同流型转化时的临界点,绘制出三面加热窄矩形通道的流型图,分析流型图中流型转化边界曲线的趋势及形成机理。将本实验流型图与现有相似通道尺寸流型图进行对比,结果表明:三面加热条件下的流型转化过程与绝热条件下的空气 水流型转化过程差异很大,某些流型转化曲线存在趋势上的不同;由于窄边加热部分的影响,与单面加热通道的流型转化过程也存在明显差异。气膜塞状流在绝热条件和单面加热条件下均未出现。  相似文献   

12.
气-液两相弹状流广泛存在于核动力工程中,弹状流中液弹特性对弹状流模型的建立具有重要意义。利用高速摄像系统,对竖直窄矩形通道内弹状流中液弹特性进行可视化研究。研究结果表明,窄矩形通道中稳定液弹可分为3个区域:先导气弹尾流区、主流速度分布恢复区和稳定速度分布区。先导气弹尾流区形成机理为先导气弹尾部液膜壁面射流过程。气弹在液弹中所处区域对其特性影响显著;主流为层流及过渡流态时,尾随气弹特性受先导气弹影响显著。在充分发展湍流工况下,液弹中近壁面处轴向速度趋于稳定所需距离等于最小稳定液弹长度Lmin;Lmin随气弹长度增加而增大,随两相雷诺数增加而减小,其变化范围为9 Dh~17Dh。  相似文献   

13.
以空气和水为工质,对竖直向上矩形通道(40 mm×1.41 mm,40 mm×10 mm)两相流流型特性进行了可视化研究。气液相表观速度分别为0.01~0.59 m/s和0.02~3.72 m/s。基于3个经典的泡状流向弹状流转变准则,考虑矩形通道的尺寸效应,导出了泡状流向弹状流转变时的临界空泡份额为0.23。以窄边宽度2.5 mm为界,将矩形通道分为小通道和常规通道两类,对泡状流向弹状流转变准则进行修正,修正准则能很好地预测实验值。为进一步验证修正准则的准确性和适用性,将修正准则与Mishima、Wilmarth和Sadatomi等的实验数据进行了对比,结果显示修正准则同样具有较好的预测效果。  相似文献   

14.
对倾角变化的矩形窄缝通道的临界热流密度(CHF)进行分析,基于逆向对流限制(CCFL)机理建立相应的理论分析模型,并将该理论模型的预测结果与已有的实验结果进行对比。结果表明:当矩形窄缝通道尺寸为1 mm和2 mm,且倾角在范围在15°~90°时,预测结果与实验值符合得比较好;在倾角小于15°时,理论模型对CHF的预测明显小于实验值;修正的Katto-Kosho关系式可以比较准确地预测倾角小于15°时的CHF值;当通道尺寸为5 mm和10 mm时,预测值比实验值大,这表明基于CCFL机理的CHF预测理论模型仅适用于通道尺寸小于等于2 mm的窄缝通道。  相似文献   

15.
矩形窄缝过冷沸腾汽泡滑移起始点可视化初步研究   总被引:2,自引:0,他引:2  
采用高速摄像仪对矩形窄缝汽泡滑移起始点进行了可视化实验初步研究.实验发现.在1.3mm的矩形窄缝中,汽泡滑移起始点在壁面上的分布呈抛物线形状,质量流密度、热流密度和系统压力对汽泡滑移起始点位置影响较大;表面粗糙度和流体波动对汽泡滑移起始点位置和滑移起始点汽泡尺寸大小有较为明显影响.  相似文献   

16.
为深入分析沸腾两相流动振荡诱发沸腾临界的影响特性,本文以去离子水为工质,横截面19 mm×19 mm、中心为外径9.5 mm的单棒通道为研究对象,通过在不同热工参数下开展沸腾两相流动特性可视化实验研究,结合汽泡行为和汽-液界面特性,分析流动振荡诱发沸腾临界的影响特性。研究结果表明,低压力、低质量流速和低入口过冷度下,极易出现流动振荡,并导致沸腾临界提前发生,此时的临界热流密度与稳定工况下相比明显偏低;随着壁面热流密度不断增加,流道中两相流型先后出现泡状流、弹状流、合并弹状流、搅混流、剧烈搅混流、不稳定环状流;当流动出现剧烈振荡时,流道存在回流;发生沸腾临界时流道压降波动最大,对应的流型为不稳定环状流。因此,单棒通道内流动振荡可能会导致沸腾临界提前发生。   相似文献   

17.
环形窄缝通道内干涸型临界热流密度的理论研究   总被引:1,自引:0,他引:1  
在双面加热的垂直环形窄缝通道内,对向上流动环状流的临界热流密度(CHF)进行理论研究,以质量、动量和能量守恒方程为基础建立数学物理模型。对该模型进行数值求解,得到了不同窄缝间隙通道内的CHF和临界含汽率的关系曲线,分析得出压力对CHF的影响,并将理论计算值与实验值进行比较。  相似文献   

18.
棒束通道内气液两相流流型的实验研究   总被引:2,自引:2,他引:0  
常温、常压条件下,在7×7矩形截面棒束通道内进行了垂直向上气液两相流动实验,气液两相折算速度的变化范围分别为0.04~14 m/s和0.238~1.860 m/s。实验中用高速摄像仪对流型进行记录,观察到了泡状流、泡状-搅混流、搅混流和搅混-环状流4种流型,发现搅混流是主要流型,并对Hewitt流型图的界限进行了修正。分析实验数据发现,摩擦压降在泡状流和搅混流区域的变化是相反的。根据实验数据,参考前人的研究得到棒束通道中泡状流向搅混流转变的边界。  相似文献   

19.
液膜干涸(DRYOUT)被广泛认为是诱发环状流区临界热流密度(CHF)的机理,已有DRYOUT模型对于矩形窄通道能否适用缺乏实验验证。本文通过比较几组不同的沉积率、夹带率关系式,得到了一优化的DRYOUT模型。计算结果表明:本文的模型较已有模型具有更高的精度,可用于矩形窄通道CHF的预测计算。  相似文献   

20.
水平矩形窄缝通道内水沸腾换热的实验研究   总被引:2,自引:0,他引:2  
以去离子水为工质,在1.0~6.0MPa压力范围内,对大宽高比(1.0×60mm、1.8×60mm、2.5×60mm)矩形狭窄通道内两相沸腾的换热特性进行了实验研究.分析了压力、窄缝间隙、热流密度、质量流量、含汽率等参数对矩形窄缝通道内水的沸腾换热的影响,得到了矩形窄缝通道内沸腾换热经验关系式,与实验数据符合良好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号