首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
使用旁路分流熔化极惰性气体保护焊(bypass current metal inert gas welding,BC-MIG焊)在水冷条件下增材制造镍铝青铜(nickel aluminum bronze,NAB)和25号钢复合结构,以评估异种金属增材制造的可行性. 通过光学显微镜、扫描电子显微镜、万能试验机和硬度测试仪研究了热处理前后复合结构的微观组织和力学性能的影响. 通过X射线衍射仪研究了界面附近残余应力,结果表明,在BC-MIG焊的低热输入和水冷的高冷却速率下,结构件表面成形良好且自由变形较小,接头未发现缺陷和裂纹. 热处理促进了Cu, Fe元素的相互扩散,扩散层由4 μm提高到了17 μm,但界面没有形成Fe-Al金属间化合物层. 在水冷条件下,钢的残余应力分布在−350 ~ −250 MPa之间,而NAB的残余应力差异较大,在−550 ~ 90 MPa之间. 拉伸试验结果表明,热处理后,由于残余应力降低,结构的抗拉强度略微降低,但断后伸长率明显提高.  相似文献   

2.
为了实现铝/钢复合结构的灵活制造,提出了“电弧 + 搅拌摩擦”复合增材制造的新方法,即先利用旁路分流熔化极惰性气体保护焊在镀锌的Q235钢表面沉积一层薄的铝合金过渡层,再搅拌摩擦增材制造过渡层和6061铝合金. 在电弧沉积过渡层过程中,镀锌层和旁路电弧促进了液滴在钢表面的润湿性和铺展性,获得了平整的表面成形,随后的搅拌摩擦增材制造过程消除了过渡层的气孔和裂纹缺陷,获得了表面成形良好且无缺陷的铝/钢复合结构. 研究了不同焊丝成分(Al-Si,Al-Mg)对铝/钢复合结构的组织和耐腐蚀性能影响,结果表明,焊丝成分不会影响焊缝成形,但会影响界面金属间化合物层厚度,Al-Si焊丝的Si元素偏聚在铝/钢界面层附近,可以有效阻止Fe,Al元素的相互扩散, 减少金属间化合物的产生.同时填充Al-Si焊丝的铝/钢结构耐腐蚀性好于填充Al-Mg焊丝,这是因为受到界面层金属间化合物的影响,金属间化合物会和基体发生电偶腐蚀,优先腐蚀铝基体,降低铝/钢复合结构耐腐蚀性能.  相似文献   

3.
丝材电弧增材制造技术因其成形速度快、成形件尺寸灵活等优点受到越来越多的关注,尤其是大尺寸、复杂形状构件的高效快速成形,丝材电弧增材制造有着其独特的优势。介绍了丝材电弧增材制造技术的工艺过程,从丝材电弧增材制造成形件的成形工艺及表面质量研究、成形件组织性能研究以及成形件残余应力研究三个方面综述国内外丝材电弧增材制造技术的研究现状,总结该技术现阶段在航空航天领域的应用情况,指出研究人员对丝材电弧增材制造技术的相关研究工作聚焦于工艺优化和过程控制两个方向,怎样才能通过熔滴的平稳过渡获得高质量的成形件,如何有效控制逐层堆积过程中晶粒及显微组织变化,以抑制零件内部不良组织的产生是需要继续研究的问题。  相似文献   

4.
苗玉刚  李春旺  尹晨豪  魏超 《焊接学报》2019,40(12):129-132
选用直径1.2 mm的4043铝焊丝为增材材料,2 mm厚的Q235镀锌钢板为基板,研究BC-MIG电弧增材制造工艺. 将得到的铝/钢焊接接头与6061铝合金板材进行焊接,得到的T形材结构成形美观. 利用光学显微镜和显微硬度仪分别对接头的组织形貌和硬度分布进行分析. 结果表明,由于温度梯度和冷却速率的差异,界面层处铝侧为竖直向上生长的树枝晶状组织,中部呈现结晶方向相对杂乱的晶枝结构,顶端组织晶粒较为细小且生长无方向性. 沿着钢母材区域至界面中间层,再至铝合金区域,接头硬度先增加后减小至趋于平缓,在铝/钢界面结合层区域硬度达到最大142 HV.  相似文献   

5.
利用丝材电弧增材制造的方法制备从TA15过渡为TC11的梯度结构材料,并对该梯度结构材料的晶粒形态、化学成分、显微组织和力学性能沿沉积方向的变化情况进行表征和研究.结果表明,从TA15到TC11,晶粒尺寸减小,并且发生从柱状晶到等轴晶的转变.合金元素的含量在短距离内变化很大,突变区的宽度为800μm.TA15区域和TC...  相似文献   

6.
采用旁路耦合三丝间接电弧焊( bypass coupling triple-wire gas indirect arc welding,BCTW-GIA焊)进行Q345低碳钢增材制造. 利用高速成像设备研究了旁路电流变化对电弧特性的影响,并观察了对应的焊缝成形特性. 结果表明,随着旁路电流的增加,间接电弧占比逐渐减少,而直接电弧占比逐渐增加,焊接热输入逐步提升,焊缝的接触角逐渐减小. 当旁路电流为155 A时,可在表面成形良好的前提下得到铺展性最优的单道焊缝. 采用此参数进行单道多层增材得到了直壁墙体,沉积速率高达13.3 kg/h. 该增材制造方法具有较高的熔敷效率和较低的热输入,有利于改善增材试样的显微组织,并提高试样的平均硬度. 试样底部、中部及顶部区域的平均硬度分别为 186.80,172.44,176.04 HV.  相似文献   

7.
电弧增材制造技术基于分散累加原理,可实现镍基高温合金复杂结构快速无模加工,是一种广受关注的先进加工技术。该研究以高温耐蚀合金Inconel 617增材制造块体为研究对象,采用OM,SEM及万能拉伸试验机等手段分析了增材制造镍基合金块体微观组织及力学性能。研究结果表明,Mo元素在柱状枝晶间偏析,促使大尺寸的Laves相沿枝晶析出。在拉伸应力下,Laves相由于脆性较高,易发生断裂,诱发裂纹萌生。由于裂纹扩展路径在不同方向拉伸时存在显著差异,导致增材制造构件沿沉积方向强度(900 MPa)显著高于垂直沉积方向强度(700 MPa)。该研究为电弧增材制造镍基合金的组织性能调控奠定了一定基础,为进一步推动电弧增材制造镍基合金构件的应用进行了有益探索。  相似文献   

8.
采用等离子电弧双丝增材制造技术成功制备了Ti-48Al合金(at.%),并对其沉积态和热处理后的组织特征进行了系统地研究.结果表明,沉积态Ti-48Al合金主要由α2相和γ相组成,沿着沉积方向,沉积态组织呈现由树枝晶区和片层晶团区交替分布的不均匀性特征,并且在树枝晶区存在严重的枝晶间Al元素偏析现象.在1 340℃/10 h/炉冷热处理后,不均匀的沉积态组织转变为晶粒尺寸细小的双态组织,Ti-48Al合金的微观组织的不均匀性获得明显改善,并且α2相含量显著增加,组织的择优取向减弱.  相似文献   

9.
采用电弧熔丝增材制造(wire and arc additive manufacturing, WAAM)技术制备了低活化铁素体/马氏体钢(reduced activation ferrite/martensite steel,RAFM钢),通过光学显微镜、扫描电子显微镜和透射电子显微镜等观察微观组织变化,通过拉伸试验进行力学性能测试,研究了热处理工艺对其微观组织和力学性能的影响.结果表明,打印态的RAFM钢微观组织为铁素体 + 回火马氏体的双相组织,平均晶粒尺寸约为1.51 μm. 经过热处理,RAFM钢的晶粒尺寸没有明显增长(1.84 μm),并在微观组织中保留了高密度位错. 此外,热处理后高数密度TiO2二次相纳米颗粒在基体中析出,并弥散分布在基体中,其尺寸在5 ~ 10 nm. 热处理后的RAFM钢抗拉强度显著提高,断后伸长率略微下降,其室温抗拉强度为1080 MPa,在650 ℃下测试的抗拉强度仍可达285 MPa.  相似文献   

10.
电弧增减材复合制造技术是一种将产品设计、软件控制以及增材制造与减材制造相结合的新兴技术。丝材电弧增材制造(WAAM),因其在金属增材制造中具有制备成本低、沉积效率高、材料利用率高等优势而备受推崇;又因其热输入高、成型精度相对较低而存在一定局限性。因此,亟待研发既能保证成形效率,又可以精确控制传热、传质、传力的增材复合制造技术。电弧增减材复合制造对于大型框架构件上肋板或类似薄壁墙体、筋板等构件的加工十分适合,可以实现降低制造成本和提高生产效率的目的。除增材制造精度和应力控制等问题外,增材后控形减材制造的切削问题不同于传统的去除加工,也受增材沉积表面不均匀性、增材余热和残余应力等因素影响。为解决上述问题,近年来为实现高速高效成形、精确控形控性的多种增减材复合制造方法不断涌现。本文对目前增材制造成形误差、增材后应力变形控制,以及增材后减材切削加工的相关研究进行综述,旨在探索金属构件增材复合带温减材制造的可行性,寻求合理利用增材余热,在保证最佳加工精度的前提下追求较小残余应力、良好材料微观性能和较高生产率的新型制造工艺。  相似文献   

11.
镍基高温合金GH3039广泛地应用于航空发动机燃烧室等零部件。采用增材制造技术制备GH3039部件可以克服其加工性能差、材料利用率低等问题。本研究首次采用基于熔化极气体保护焊的电弧增材制造(GMAW-WAAM)技术制备了GH3039薄壁件。利用光学显微镜(OM)、显微硬度仪和拉伸试验分析了薄壁构件的组织和性能。结果表明,采用GMAW-WAAM制备的GH3039构件组织致密,无气孔或裂纹等缺陷。合金的显微组织主要由高度方向生长的粗大柱状晶和层间细小晶粒构成。沉积态合金具有较好的室温和高温性能:室温抗拉强度520~540MPa,断后延伸率36~40%; 800°C抗拉强度189MPa,断后延伸率35.4%。本研究验证了采用GMAW-WAAM技术制备GH3039部件的可行性。  相似文献   

12.
TC4钛合金电弧增材制造叠层组织特征   总被引:7,自引:4,他引:3       下载免费PDF全文
采用CMT电弧增材制造技术制造了TC4钛合金薄壁墙构件,并对其组织特征进行了研究. 结果表明,在电弧增材制造过程中,受其热输入、多次热循环及冷却速度的影响,在其构件中产生了从高温保留下来的贯穿数个堆积层的原始β柱状晶晶界、水平层带条纹、马氏体组织和网篮组织等. 显微硬度显示,中下部区域硬度相对较高,平均硬度为336HV 0.1,上部显微硬度有明显降低,平均硬度为323.3HV 0.1.  相似文献   

13.
通过基于冷金属转移的电弧熔丝增材制造技术制备了铝/钛复合材料. 观察到钛/铝结合界面存在元素扩散,形成一定厚度的中间反应层,表明界面结合良好. 同时,通过硬度测试得到界面附近的硬度介于钛侧与铝侧之间,这主要是由于元素扩散导致界面附近生成了硬脆金属间化合物. 考虑到不同的复合比会导致不同力学性能,通过拉伸试验,研究了复合比对带缺口的钛/铝复合材料拉伸力学性能的影响规律. 结果表明,在持续拉伸载荷作用下,钛/铝复合材料的两组成层之间相互影响. 随着复合比的增加,抗拉强度和屈服强度增加,断后伸长率由于受钛铝之间冶金反应的影响较大,当钛/铝试样具有较低复合比时,其断后伸长率甚至小于单一沉积铝,随后才随着复合比的增加而增大. 另外,运用ABAQUS补充了多组复合比下钛/铝复合材料的拉伸过程,得到了复合比与屈服强度和抗拉强度的关系式.  相似文献   

14.
电弧增材制造以其沉积效率高、增材速度快的特点,在大型构件的增材制造中有很大优势,进一步发挥增材制造优势是未来重要研究趋势.介绍了电弧增材制造的工艺方法,对比不同方法的沉积效率和性能特点,指出激光诱导电弧增材和热丝增材可以显著提高增材效率;总结了添加剂和焊料对沉积件性能的影响规律,发现层间添加剂有助于提高沉积件的力学性能...  相似文献   

15.
电弧增材制造技术是制备点阵结构的有效方法。研究了点阵结构电弧增材制造装备、铝基药芯焊丝设计与制备技术、激光约束电弧工艺和点阵杆件直径、角度控制方法,制备了典型点阵结构示范件。点阵结构电弧增材制造装备由增材制造单元、激光单元与监测单元组成。设计自生Al2O3相铝合金药芯丝材Al-Cu-NiO合金体系,制备出直径1.2 mm的药芯丝材,堆积杆件具有较低的热导率。激光激发大量中性粒子电离,使电弧中的带电粒子大幅度增加,对电弧存在约束和稳定作用,提高成形精度。控制电弧增材制造熔滴体积与个数,可制备直径为2.5~7.0 mm的点阵单元杆件。控制电弧增材制造电弧枪纵向与横向运动量,可制备角度为15°~90°的点阵单元杆件。利用点阵结构电弧增材制造技术实现了平面点阵结构、圆柱面点阵结构和曲母线面点阵结构的高精度成形,点阵结构的平均压缩强度为58.53 MPa,具有较高的承载性能。在点阵测试件的上表面施加均匀热源,热源温度为500℃,时间600 s,测试件下表面温度约93℃,具有较高的隔热性能。  相似文献   

16.
采用冷金属过渡(CMT)技术+脉冲(P)电弧增材制造工艺制备了不同热输入的590 MPa (屈服强度)级船用高强钢构件,利用OM、SEM、EBSD和TEM等方法研究了热输入对成形构件组织与力学性能的影响。结果表明,热输入为5.6 kJ/cm时,构件显微组织主要为上贝氏体和粒状贝氏体,马氏体-奥氏体(M-A)组元面积分数约为14.82%,有效大角度晶界(晶界角度α> 45°)长度占比为36.3%,构件在横向和纵向的抗拉强度分别达到843和858 MPa,平均硬度为286 HV,但其-50℃冲击吸收功分别仅为15和16 J;而当热输入增加至13.5 kJ/cm时,低冷却速率和高有效夹杂物(夹杂物尺寸d> 0.4μm)含量促使增材制造构件组织中形成大量针状铁素体,同时还出现了板条贝氏体和少量粒状贝氏体,M-A组元面积分数降低至4.21%,有效大角度晶界长度占比增至52.4%,构件在横向和纵向的抗拉强度分别降低至723和705 MPa,与此同时,构件平均硬度也降低至258 HV,但其低温冲击吸收功大幅提高,分别达到了109和127 J,约是低热输入条件下构件低温冲击吸收功的7~8倍...  相似文献   

17.
针对传统丝材等离子弧增材制造碳钢效率低、质量高的特点,提出了一种"双填丝+压缩等离子弧"增材制造工艺,并采用该工艺增材制造了试样,对比分析了双填丝与单填丝增材制造试样的成形尺寸、显微组织特征和力学性能.结果表明,相对于单填丝等离子弧增材制造工艺,采用新型双填丝等离子弧增材制造工艺,在相同的工艺条件下,熔敷效率提高了0.97倍;平均晶粒尺寸由18.75 μm细化到13.47 μm;试样纵向拉伸抗拉强度提高了62.64 MPa,横向拉伸抗拉强度提高了67.52 MPa;试样有效层的平均显微维氏硬度由158.95 HV0.5增加到175.34 HV0.5.  相似文献   

18.
汪阳  余圣甫  权利  汪能  陈胜元 《焊接》2024,(2):1-8+25
多向钢节点作为连接大型钢结构的关键构件,承载钢结构建筑各方向的力,对其安全性起至关重要的作用。基于七向钢节点结构特点,文中研究了电弧增材制造钢结构建筑的七向钢节点,采用分区成形、平曲面切片及摆动填充的路径规划方法,将其分为直臂圆管区、相贯区和支管延长区3个区域,相贯区包括两管相贯、三管相贯和四管相贯3种类型。直臂圆管区和支管延长区采用摆动工艺进行堆积,两管相贯、三管相贯和四管相贯区分别采用曲面切片的路径规划进行堆积。对堆积完成的构件进行成形精度检测、微观组织的观测和力学性能的测量。结果表明,七向钢节点构件成形尺寸偏差为±1.32 mm,成形精度较高。微观组织为铁素体和珠光体,构件的抗拉强度和屈服强度相对于同成分铸件分别提高了约30%和105%,电弧增材制造的七向钢节点满足使用要求。  相似文献   

19.
利用MIG复合增材制造方法在20 mm厚低碳钢上交替熔覆硅青铜与304不锈钢制备复合增材制造熔覆层,对3种不同增材制造路径制备的熔覆层成形质量进行了研究,揭示了不同熔覆层显微组织特点和硬度分布。研究结果表明,铜和钢熔覆层熔合线处均形成了良好的冶金结合,铜熔覆层会产生气孔,钢熔覆层中会形成铜向钢的渗透裂纹,铜层会向钢熔覆层塌陷。在铜熔覆层,钢会渗入铜中形成固溶体,该区域显微组织表现为球形的铁基固溶体弥散分布在铜基固溶体中;在钢熔覆层,底部钢呈细小的柱状晶沿垂直熔合线方向生长,并向顶部慢慢长大,当钢层作为最顶层熔覆层时,会形成等轴晶。铜熔覆层硬度在90~175 HV左右,随着进入铜层的钢含量增多而增大。304不锈钢熔覆层硬度在160~526 HV左右,而在钢熔覆层中临近铜熔覆层区域,由于Si元素的渗入,硬度会显著提高。  相似文献   

20.
为解决电弧连续增材时,由于热积累效应导致堆敷层的塌陷问题,在基板底部加装水冷铝板,制备了水冷断续、水冷连续两种不同工艺的4047铝合金直壁构件,并制备无水冷条件下的增材构件作为对照. 通过对比3种工艺条件下的构件基板热循环曲线、晶粒形貌、抗拉强度、硬度和断后伸长率,研究水冷条件对增材构件宏观形貌、微观组织和力学性能的影响. 结果表明,水冷断续条件能够有效降低热量积累,增材构件侧壁更加平整. 水冷连续条件下增材直壁构件成形最好,两端无塌陷产生,且成形效率最高. 3种增材构件底部晶粒都以等轴晶为主,其余部位都以柱状晶和树枝晶为主. 水冷连续条件下构件的晶粒尺寸最大,水冷断续条件下晶粒尺寸最小. 各增材工艺制备的构件力学性能与ZL102铸造铝合金相当,其中水冷断续工艺制备的增材构件力学性最好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号