首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
静电纺PA 6纳米纤维膜的力学性能研究   总被引:1,自引:1,他引:0  
利用静电纺丝可形成由纳米级纤维组成的纳米纤维膜,由于该膜孔径小并具有高比表面积和高孔隙率,可用作组织工程支架、传感器感知膜、过滤材料和防护材料等。静电纺纳米纤维膜的力学性能对其适用性和耐用性有重要影响。以PA 6甲酸溶液进行静电纺丝,研究了纺丝液喂入速度和纺丝距离对静电纺PA 6纳米纤维膜力学性能的影响。结果表明:纺丝液喂入速度较低时,形成的纳米纤维膜力学性能差;纺丝距离增大时,纳米纤维膜的断裂强度降低;PA 6溶解于98%甲酸中配制成13%(质量分数)纺丝液,在喷嘴口径0.9 mm、电压30 kV下进行静电纺丝,纺丝液喂入速度在0.2~0.3 ml/h、纺丝距离为8~10 cm时可获得具有良好力学性能的PA 6纳米纤维膜。  相似文献   

2.
采用热轧工艺复合涤纶织物和静电纺聚偏四氟乙烯(PVDF)纳米纤维膜,开发具有防水性、透湿性、透气性的复合织物。探讨纺丝液中PVDF质量分数和纺丝电压对PVDF纳米纤维膜形貌的影响,测试采用3种复合工艺制得的单层膜复合织物、单面双层膜复合织物和双面单层膜复合织物的瞬时接触角和动态接触角,以及单层膜复合织物的透湿性、透气性和力学性能。结果表明:纺丝液中PVDF的质量分数为23%、纺丝电压为15、16 kV时,可制得纤维直径为300~400 nm且粗细均匀的PVDF纳米纤维膜;单层膜复合织物、单面双层膜复合织物和双面单层膜复合织物的接触角分别为135.1°、142.4°和136.7°,8 min后接触角的降幅分别为5.40%、10.57%和10.31%;与涤纶织物原样相比,单层膜复合织物的透气率下降35.53%,透湿量下降6.93%,力学性能提高。  相似文献   

3.
对适用于全新风系统的高效低阻并具有抑菌性能的复合空气过滤材料进行研发。先将聚丙烯腈(PAN)静电纺纳米纤维膜沉积到优选的丙纶(PP纤维)针刺过滤材料上,测试其过滤性能,采用极差分析和灰色聚类分析法选出最优静电纺丝工艺参数;再配制石墨烯质量分数分别为0.5%、1.0%和1.5%的石墨烯/PAN静电纺丝液,基于最优静电纺丝工艺参数,制备石墨烯/PAN静电纺/PP纤维针刺复合空气过滤材料,测试并分析其过滤性能和抑菌性能。结果表明:制备PAN静电纺纳米纤维膜的最优静电纺丝工艺参数为PAN质量分数11.0%、纺丝电压15 kV、注射速度0.84 mL/h、接收距离14 cm;在最优静电纺丝工艺参数条件下,石墨烯质量分数为0.5%时,石墨烯/PAN静电纺/PP纤维针刺复合空气过滤材料的过滤性能最好。石墨烯/PAN静电纺/PP纤维针刺复合空气过滤材料高效低阻,并具有优良的抑菌性能,适用于全新风系统过滤室内空气中的微细颗粒物。  相似文献   

4.
通过调节溶液质量分数、质量比、纺丝电压、供液速度、接收距离和辊筒转速等工艺参数,探讨不同条件对静电纺聚乙烯醇(PVA)/海藻酸钠(SA)复合纳米纤维膜的影响,制备纤维形貌优良的复合纳米纤维膜。使用场发射扫描电镜(FE-SEM)观察复合纳米纤维膜的形貌,并分析纤维直径及其分布。结果表明:最优工艺参数为聚乙烯醇质量分数10%、海藻酸钠质量分数2%、质量比8∶2、纺丝电压19 kV、供液速度1.6 mL/h、接收距离19 cm、辊筒转速300 r/min。此时,可得到形貌良好、分布均匀,平均直径为120.8 nm的复合纳米纤维。  相似文献   

5.
以聚丙烯腈(PAN)为原料,N,N-二甲基甲酰胺为溶剂制备纺丝液并进行静电纺丝,用熔喷聚丙烯(PP)非织造材料为基材接收静电纺PAN纳米纤维膜,制备PAN静电纺/PP熔喷复合材料。研究了静电纺丝工艺参数对纤维直径及均匀度的影响,优化了静电纺丝工艺,在此基础上改变纺丝时间控制熔喷非织造材料表面复合的静电纺纳米纤维含量,通过AFC-131滤料性能测试系统测试了PAN静电纺/PP熔喷复合材料的空气过滤性能。结果表明,在熔喷非织造材料喷覆静电纺PAN纳米纤维膜后,过滤效率明显提高,颗粒越小,过滤效率提高越多,且随喷覆时间的增加,过滤效率提高,滤阻增加,但滤阻增加值小于过滤效率增加值,综合考虑在纺丝时间为10min时,可以制备高效低阻的PAN静电纺/PP熔喷复合非织造过滤材料。  相似文献   

6.
以亲水性聚氨酯为基材,采用无针静电纺丝技术制备微孔纳米纤维膜材,再通过热熔胶网膜黏合制备防水透湿膜复合面料.借助SEM形貌特征分析确定TPU纳米纤维膜制备工艺条件为:TPU质量分数10%、纺丝电压15 kV、纺丝距离18 cm、储液槽移动速度50 mm/s、接收基布移动速度5 mm/min.试验结果显示,TPU纳米纤维...  相似文献   

7.
采用N,N-二甲基甲酰胺(DMF)作为溶剂,热塑性聚氨酯(TPU)、聚乙烯吡咯烷酮(PVP)作为溶质,聚烯烃系纤维(ES)热风非织造材料作为接收基材,通过无针静电纺丝技术制备TPU/PVP静电纺纳米纤维膜,并与接收基材复合形成具有一定孔径梯度和亲疏水性差异的复合面层。探究纳米纤维膜的表面微观形貌、孔径,复合面层的透气性能、单向导水性能、结合牢度,以及组装纸尿裤的尿液下渗速度、尿液扩散长度和尿液回渗量。结果表明:当混合纺丝液中TPU和PVP质量分数均为8%时,复合面层的综合性能最佳。其结合牢度最佳,20次摩擦后面积损失率仅为1.44%;单向导水性能优异,累计单向传递指数可达624.63%;用该复合面层组装的纸尿裤的防尿液反渗性能强,尿液回渗量低(约0.05 g),面层干爽性出色。  相似文献   

8.
以聚乙烯醇(PVA)和壳聚糖(CS)为原料,使用静电纺丝设备制备复合纳米纤维膜,纺丝液中CS的质量百分数最大为1.3%。探究了纺丝工艺参数对静电纺PVA/CS纳米纤维膜形态结构的影响。结果表明,在一定范围内,静电纺PVA/CS复合纳米纤维的直径随纺丝电压的增大而减小,随着纺丝距离的增大而增大,随纺丝液流量的增加而增加。通过正交试验得到优化的纺丝工艺条件:纺丝电压21kv,纺丝距离14cm,纺丝液流量0.2mL/h,所纺纤维的平均直径为128nm,纤维直径CV值为28%。  相似文献   

9.
利用静电纺丝方法制备了聚乙烯醇(PVA)/壳聚糖(CS)纳米纤维膜,与涤棉混纺基布复合并进行拒水整理,制备出具有一定抗水溶性和抗菌性的复合织物,并分析复合织物的微观形貌及相关物理机械性能.研究表明:PVA质量分数为12%、CS质量分数为0.5%的纺丝液在纺丝电压为25 kV、接收距离为25 cm时纤维具有较好的可纺性,...  相似文献   

10.
《上海纺织科技》2021,49(7):44-46
通过无针静电纺丝技术制备了锦纶(PA) 56/荧光素纳米纤维膜,研究了纺丝液性质及PA56/荧光素纤维膜的荧光特性。结果表明,PA56/荧光素溶液静电纺丝性能良好,获得的PA56/荧光素纳米纤维膜直径均匀,具有良好的荧光性能。随荧光素加入量的增加,纤维膜荧光强度增加,断裂强度有所下降。  相似文献   

11.
以聚丙烯腈(PAN)为原料,通过静电纺丝制备PAN纳米纤维并沉积在聚丙烯(PP)针刺非织造材料的表面,制备成静电纺/针刺复合过滤材料。对复合过滤材料结构、纤维直径及过滤性能进行测试。结果表明:当PAN纺丝液质量分数为12%,纺丝电压15 kV,接收距离6.1 cm,溶液流速1 mL/h,接收时间1 h时,复合过滤材料的过滤效率可达到95.57%,而呼吸阻力仅为3.8 mm H_2O,可用于制备高效低阻空气过滤材料。  相似文献   

12.
为探究纺丝液质量分数对皮芯结构微纳米纤维复合纱线结构与性能的影响,利用双针头水浴静电纺丝法连续制备了以聚对苯二甲酸乙二醇酯(PET)长丝为芯、外包聚酰胺6(PA6)的皮芯结构微纳米纤维复合纱线,通过扫描电子显微镜、差示扫描量热仪和万能材料试验机对其形貌结构、热性能和力学性能等进行测试与表征。结果表明:不同PA6纺丝液质量分数制备的微纳米纤维复合纱线均具有良好的皮芯结构;当PA6纺丝液质量分数从10%提高到20%时,纳米纤维复合纱线的平均直径从(61.99±13.08) nm增加到(150.22±21.53) nm,结晶度由16.28%提高至20.63%;当PA6纺丝液质量分数为20%时复合纱线的结晶度达到了常规PA6纤维的结晶范围,增加纺丝液质量分数一定程度上可提高复合纱线的力学性能。  相似文献   

13.
采用静电纺丝技术将羊皮胶原蛋白(COL)和聚乙烯醇(PVA)电纺沉积在亚麻织物表面,得到一种力学性能优良以及柔软亲肤的复合亚麻织物。配制质量分数为8%的COL/PVA(w/w=2∶8)纺丝溶液,在纺丝速度为0.5 mL/h、纺丝距离为15 cm、纺丝电压为25 kV的工艺条件下进行静电纺丝。研究发现:随着纺丝时间的延长,复合织物的厚度逐渐增加,回潮率不断升高,断裂强力略有提升,断裂伸长率稍有增大,而织物的透湿率和透气率略有下降;复合织物的弯曲刚性、摩擦因数、折皱回复角、柔软性有所改善;亚麻织物和胶原蛋白基纳米纤维属于物理复合,复合后织物热稳定性略有增强;纳米纤维固着在织物表面,织物变得平整光滑。  相似文献   

14.
为获得疏水性较好且具有一定机械性能的聚氨酯(PU)纳米纤维膜,将不同质量分数的聚氨酯纺丝液进行粘度测试并纺丝,建立质量分数与溶液增比粘度、纤维形态的关系,将不同质量分数的纺丝液进行静电对喷制备出表面具有不同粗糙度的纳米纤维膜,并对其疏水性能、机械性能进行测试分析。结果表明:高质量分数的纺丝液提升纳米纤维膜的机械性能,较低质量分数的纺丝液提升表面粗糙度;表面越粗糙,疏水性越好,质量分数为4%+18%的纺丝液进行静电对喷时,接触角能够达到140.33°;纺丝液质量分数越大,静电对喷时机械性能越好,质量分数为18%+18%的纺丝液进行静电对喷时,纳米纤维膜的最大载荷为1.082 9 MPa。  相似文献   

15.
王曙东  董青  王可  马倩 《纺织学报》2021,42(12):28-33
针对静电纺聚乳酸(PLA)纳米纤维膜力学强度不高的问题,将一定质量的还原氧化石墨烯(rGO)分散于PLA和二甲基甲酰胺(DMF)纺丝溶液中,通过静电纺丝法制备PLA/rGO复合纳米纤维膜。对纺丝液的流变性能以及复合纳米纤维膜的形貌结构、微观结构和力学性能进行分析,采用四唑盐比色法对复合纳米纤维膜的细胞相容性进行表征。结果表明:rGO成功地复合至PLA纳米纤维中,且以不规则球状形式分布于PLA纳米纤维膜中;rGO的复合显著提升了PLA纳米纤维膜的力学强度,当rGO质量分数为0.6%时,复合纳米纤维膜的断裂强度达2.02 MPa,是纯PLA纳米纤维膜2.3倍;培养1、3和7 d后,小鼠胚胎成骨细胞可在复合纳米纤维膜上生长和增殖,表明PLA/rGO复合纳米纤维膜具有较好的细胞相容性。  相似文献   

16.
为制备环境友好的防水透湿织物,通过对喷的方式,以涤棉机织物为接收基布,使用聚二甲基硅氧烷(PDMS)和聚氨酯(PU)为原料,利用静电纺丝技术制备PDMS/PU纳米纤维膜,然后采用静电喷雾法将沥青微球引入该纳米纤维膜,构建特殊微纳米结构,制得PDMS/PU/沥青纳米纤维膜复合织物.探究沥青质量分数对其表面形貌、防水性能、...  相似文献   

17.
用98%甲酸溶解聚酰胺6(PA 6)制备质量浓度为13%纺丝液,经静电纺丝获得厚度31~60μm、纤维平均直径217 nm、表面平均孔径为234 nm的纳米纤维非织造膜.由于该纤维膜的断裂强度仅为8.06 MPa,实验以普通聚酯纤维织物为支撑基布,测试了不同样品的过滤性能.结果发现:在气流速度为2.83 L/min时,...  相似文献   

18.
为获得比常规静电纺丝纤维直径更细的聚丙烯腈(PAN)纳米纤维,采用复合静电纺丝方法制备了聚丙烯腈/醋酸丁酸纤维素(PAN/CAB)复合纳米纤维,再溶解掉复合纳米纤维中的CAB组分,得到超细PAN纳米纤维并对其进行氨基化改性后用于吸附直接红23(DR23)染料。研究了PAN和CAB的混合比例、纺丝溶液质量分数和纺丝液挤出速度3个因素对所得PAN 纳米纤维直径的影响,并比较了常规静电纺和复合静电纺制备出的PAN纳米纤维改性后的染料吸附量。实验结果表明:该方法制得的PAN纳米纤维的平均直径在50~80 nm范围内,其中当PAN和CAB的质量比为15:85、纺丝溶液质量分数为15%、纺丝液挤出速度为1.5 mL/h、纺丝电压为10 kV、接收距离为20 cm时,得到的PAN纳米纤维的平均直径为50 nm;改性后纳米纤维对DR 23的平衡吸附量达833mg/g。  相似文献   

19.
将石墨烯(GR)纳米颗粒掺杂到聚丙烯腈(PAN)纺丝溶液中,利用静电纺丝技术制备石墨烯/聚丙烯腈(GR/PAN)复合纳米纤维膜。研究PAN质量分数、GR用量、纺丝电压及接收距离对GR/PAN复合纳米纤维膜形貌和过滤性能的影响,发现最优纺丝工艺参数为PAN质量分数14.0%、GR用量1.5%、纺丝电压26 kV、接收距离14 cm、注射速度1 mL/h。此最优纺丝工艺参数制备的GR/PAN复合纳米纤维膜的过滤效率为98.86%,过滤阻力为110.30 Pa。  相似文献   

20.
纳米蛛网纤维膜由普通静电纺纤维和类似蜘蛛网形态的超细蛛网纤维组成.采用静电纺丝工艺在不同聚酰胺6(PA 6)和氯化钡质量分数条件下制备纳米蛛网纤维膜.通过扫描电子显微镜(SEM)观察纤维膜的表观形貌,计算纳米纤维直径、蛛网纤维直径和蛛网覆盖率.结果表明:随着PA6质量分数的提高,纳米纤维和蛛网纤维的直径均逐渐增大,适中...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号