首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
氧化石墨烯材料具有巨大的比表面积、良好的亲水性和优异的吸附性能,在污水处理方面具有广阔的应用前景。综述了氧化石墨烯在污水处理方面的研究进展,重点分析了氧化石墨烯材料对污水中有机物、重金属和染料的吸附机理和吸附效果;氧化石墨烯作为吸附材料时其效果和成本都优于普通吸附材料;着重阐述了氧化石墨烯对水体污染物吸附性能的影响因素,如初始pH、氧化石墨烯投加量、污染物初始浓度、溶液温度等。总结了氧化石墨烯应用于污水处理时的适宜环境和条件,为未来氧化石墨烯在污水处理方面的应用提供一些思路。  相似文献   

2.
以壳聚糖为吸附剂,吸附分散于水中的氧化石墨烯。研究了粒径、脱乙酰度对吸附速率的影响,通过吸附pH值、温度的变化研究了壳聚糖吸附氧化石墨烯的主要机理。借助SEM分析了壳聚糖吸附后的形貌,使用FTIR分析了吸附前后壳聚糖表面官能团的变化。研究表明,壳聚糖吸附氧化石墨烯是静电吸附和氢键作用相结合的物理吸附,脱乙酰度为85%的壳聚糖对氧化石墨烯的吸附效果最佳,吸附速率随pH值增加而降低,壳聚糖比表面积越大,温度越高吸附速率越快,吸附后氧化石墨烯平铺在壳聚糖颗粒的表面。  相似文献   

3.
选取壳聚糖和聚乙烯醇与氧化石墨烯共混复合,通过湿法纺丝工艺技术,制备不同氧化石墨烯含量的氧化石墨烯-壳聚糖复合纤维。利用扫描电镜和红外光谱表征了复合纤维的微观结构和化学组成,结果表明:复合纤维成形较好,氧化石墨烯与壳聚糖之间形成了稳定的氢键。通过染料吸附试验可知:氧化石墨烯可明显提高复合纤维对染料的吸附能力,当氧化石墨烯质量分数为1%时,吸附效果最理想,吸附量可达407 mg/g,有望用于印染废水的综合处理。  相似文献   

4.
氧化石墨烯,由于其比表面积大、表面含氧功能化官能团丰富,因而被应用于吸附领域。本文主要介绍的是氧化石墨烯对铀的吸附研究进展,主要包括氧化石墨烯,功能化氧化石墨烯以及氧化石墨烯复合材料。  相似文献   

5.
针对制革、电镀废水中Cr(Ⅵ)污染水体问题,采用改进的Hummers法制备了氧化石墨烯(GO),利用傅里叶红外光谱、X射线衍射、扫描电子显微镜对氧化石墨烯(GO)的结构和表面形貌进行了表征。采用静态批式法研究Cr(Ⅵ)在氧化石墨烯(GO)上的吸附行为,重点研究了氧化石墨烯(GO)用量、吸附时间、吸附温度和Cr(Ⅵ)初始浓度等因素对吸附的影响。实验结果表明,氧化石墨烯(GO)用量、吸附时间和Cr(Ⅵ)初始浓度对吸附影响有较大,吸附温度对吸附的影响最为显著。研究结果表明氧化石墨烯(GO)可以作为吸附法处理含铬废水的的一种有研究前景的吸附材料。  相似文献   

6.
聚醚砜膜和氧化石墨烯都是良好的吸附材料,通过改性、接枝将二者组合,制备一种新型吸附材料聚醚砜膜接枝氧化石墨烯改性膜用于吸附Pb^2+。通过IR对膜进行了表征,考察了该膜对Pb^2+的吸附性能。研究了吸附时间、温度、溶液pH、溶液浓度、氧化石墨烯含量和氨基化剂量对吸附量的影响,检验了膜的重复使用性能。实验结果表明,在最佳吸附条件为温度55℃、pH=6.18、氧化石墨烯含量3.3%、3 mL氨基化试剂;膜重复使用4次后吸附量仍能达到初次吸附量的72.75%,表明聚醚砜膜接枝改性氧化石墨烯氨基羧酸是一种优良的吸附材料。  相似文献   

7.
诺氟沙星排放到环境中危害人体健康,破坏生态系统。氧化石墨烯是石墨烯的重要衍生物之一,具有优秀的吸附性能。本文采用流延膜法制备了氧化石墨烯-淀粉复合薄膜,研究探讨了氧化石墨烯-淀粉复合薄膜对诺氟沙星的吸附降解效果。  相似文献   

8.
《应用化工》2022,(9):2337-2340
从氧化石墨烯独特的结构分析开始,解析了氧化石墨烯基材料对水体中金属离子及有机污染物的吸附机理,并重点介绍了氧化石墨烯及其复合材料在水处理中的应用研究现状和对水体中金属离子及有机污染物的吸附效果,以期为相关研究工作提供参考。  相似文献   

9.
利用过氧化法制备出氧化石墨烯,在氮气的保护下合成磁性氧化石墨烯(MGO)。考察了溶液pH、铀的初始浓度、吸附时间和吸附温度对铀吸附影响。用电镜扫描和XRD对MGO进行了形貌结构表征,确定了Fe_3O_4成功的负载在氧化石墨烯上。结果表明,吸附等温线符合Langmuir模型,吸附动力学符合准二级动力学,热力学表明吸附为自发吸热过程。最大吸附为224.93 mg/g。  相似文献   

10.
重金属离子在自然环境中难降解、易富集、毒性大,目前重金属污染已成为全球广泛关注的问题。吸附法在处理重金属废水中有着广泛的应用,本研究以石墨和苯胺为基本原料,成功制备出氧化石墨烯/聚苯胺复合材料,并且研究了氧化石墨烯/聚苯胺复合材料对六价铬的吸附性能,结果表明氧化石墨烯/聚苯胺复合材料对六价铬的吸附性能优于单一的氧化石墨烯和聚苯胺材料,该复合材料有较大的吸附潜力。  相似文献   

11.
采用FeCl3作为磁流体制备磁性氧化石墨烯.考察了溶液pH值、溶液初始浓度、吸附温度和吸附时间对磁性氧化石墨烯吸附铀(Ⅵ)性能的影响,并探讨了吸附热力学、等温吸附性能和动力学.结果表明:磁性氧化石墨烯吸附铀(Ⅵ)的最佳pH值为7.0,吸附平衡时间为180min,298K时饱和吸附容量为113.27 mg/g.吸附行为符合Langmuir等温吸附模型和准二级吸附动力学模型,即表明吸附主要是受化学作用控制.  相似文献   

12.
先以膨胀石墨为原料,通过改进的Hummers法制备得到氧化石墨烯,再以硫酸亚铁、三氯化铁和制备得到的氧化石墨烯为原料,通过水浴加热的方法制备得到氧化石墨烯/四氧化三铁复合物。最后,以镁离子为吸附对象,研究工艺条件对氧化石墨烯/四氧化三铁复合物吸附率的影响。研究结果表明:吸附时间为6 min、吸附剂用量为10 mg和吸附温度为25℃时,制备得到的复合物对给定条件下的镁离子具有较好的吸附率。  相似文献   

13.
从氧化石墨烯独特的结构分析开始,解析了氧化石墨烯基材料对水体中金属离子及有机污染物的吸附机理,并重点介绍了氧化石墨烯及其复合材料在水处理中的应用研究现状和对水体中金属离子及有机污染物的吸附效果,以期为相关研究工作提供参考。  相似文献   

14.
以氧化石墨烯和金刚烷为原料,通过水相合成法制备了金刚烷胺功能化氧化石墨烯复合材料A/GO,以FT-IR、XRD和XPS对A/GO进行了结构表征,并考察了A/GO对有机染料的吸附性能。结果表明,与氧化石墨烯相比,A/GO对甲基蓝(AB93)表现出高效吸附性,其吸附动力学和吸附等温模型分别符合拟二级动力学和Langmuir模型,理论最大吸附容量(qm)为1250.0 mg/g。热力学分析表明,A/GO吸附AB93是自发的放热过程。A/GO吸附AB93对盐(NaCl和KCl)表现出良好的耐盐性,而CaCl2能有效地促进A/GO吸附AB93。对于刚果红和AB93等的混合染料体系,A/GO能选择性吸附AB93。  相似文献   

15.
采用氧化石墨烯与壳聚糖为基本原料,先形成水凝胶再冻干制备了氧化石墨烯-壳聚糖气凝胶材料。在X射线衍射和红外光谱表征的基础上,研究其对亚甲蓝和甲基橙的吸附效果。结果表明,氧化石墨烯含量越高,对亚甲蓝和甲基橙的吸附效果越好,吸附反应中,静电力占主导地位,而有机分子和氧化石墨烯之间的π-π疏水分配及壳聚糖对气凝胶结构的优化也具有一定作用。对亚甲蓝的吸附快于甲基橙,但吸附过程都更符合准2级动力学模型。采用Na OH和HCl可以对吸附了亚甲蓝和甲基橙的氧化石墨烯-壳聚糖进行脱附与再生。在动态滤柱吸附实验中,氧化石墨烯-壳聚糖填充密度小(25 g/L)、孔隙率高(92.5%),表现出了良好的水稳性。实验条件下,对亚甲蓝的去除效果优于甲基橙。  相似文献   

16.
石墨烯材料的吸附性能引起了国内外科学工作者的极大关注,主要介绍了近些年石墨烯和氧化石墨烯对水中金属离子、有机染料、无机非金属离子的吸附性能及研究进展。  相似文献   

17.
采用改进的Hummers制备氧化石墨烯,对其进行功能化改性,制得功能化氧化石墨烯f-GO,再将功能化氧化石墨烯和纤维素共混,制备了具有较强吸附性能的功能化氧化石墨烯/纤维素复合材料(f-GO/CE)。以复合材料为载体,用静态法考察了pH值、吸附时间、初始浓度等因素对f-GO/CE吸附Pb~(2+)效果的影响。结果表明,吸附最适pH为6,吸附时间是150 min,最佳初始浓度为240 mg/L;同时f-GO/CE对Pb~(2+)的吸附行为符合Langmiur方程,吸附最大量可达到105mg/g,其对铅离子具有优异的吸附性能。  相似文献   

18.
简述了石墨烯的基本结构以及氧化石墨烯在结构上的优越性。概述了氧化石墨烯的主要改性方法。针对不同的影响因素,总结了改性氧化石墨烯对废水中重金属的吸附效果。对去除水体中重金属的反应机理进行了归纳,指出了改性氧化石墨烯目前应用在污水处理中存在的问题及应用前景。  相似文献   

19.
氧化石墨烯(GO)具有较大比表面积、富含丰富的含氧官能团,在吸附处理方面得到广泛的应用。本文综述了GO和改性氧化石墨烯复合材料的制备方法及其在重金属离子吸附处理方面的研究进展;提出了改性氧化石墨烯复合材料目前应用在污水处理中需进一步研究的问题。  相似文献   

20.
综述了石墨烯和氧化石墨烯的理化性质和发展前景,从吸附重金属离子和有机染料的角度出发,概述了氧化石墨烯及其复合材料对Cu~(2+)、Pb~(2+)和MB的吸附效果及对金属离子和有机染料的吸附机理。最后针对全文研究进展做了总结同时对未来高效吸附剂的开发做了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号