首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
王皓宇  柳建华  张良  余肖霄 《制冷学报》2020,41(3):78-82+90
本文研究了R290在内径为1 mm、2 mm和4 mm水平微细圆管内的沸腾流动换热特性,在饱和温度为15℃条件下,质量流速为50~600 kg/(m2·s)、干度为0~1、热流密度为5~20 k W/m2时,对沸腾传热系数的影响进行了分析。通过实验发现,增大质量流速对传热系数具有增强作用,质量流速对传热系数的影响在低干度区域比高干度区域小。在热流密度方面,传热系数随着热流密度的增大而增大,且在1 mm和2 mm管内观察到了临界干度对传热系数的影响,这时传热系数有断崖式下降的趋势。在管径对于传热系数的影响方面,通过对不同管径换热特性的横向对比,发现在一定工况下传热系数随着管径的减小有所上升。此外本文还对R290已有的部分关联式进行了适配性验证。  相似文献   

2.
实验研究了R290、R22在细圆管中的流动凝结换热特性。实验管内径为1.085 mm,R22的质量流率为200~1200 kg/(m2·s),R290的质量流率为200~650 kg/(m2·s),饱和温度分别为40℃与50℃。实验结果表明,高质量流率时R22在较高干度下换热系数随干度增加缓慢或略有下降,低质量流率时,R290在较小干度下出现换热系数下降。两种制冷剂蒸气相比,相同条件下R290的凝结换热系数高于R22的。本文的实验结果还与现有典型关联式的计算结果作了对比,其中,Wang et al.(2002)关联式对R290的实验数据预测偏差在17.5%之内,Kim et al.(2013)关联式对R22的实验数据预测偏差在18.4%之内。  相似文献   

3.
何宽  柳建华  余肖霄 《制冷学报》2019,40(5):118-123
本文对R290在5mm小管径内的流动沸腾换热特性进行实验研究,重点研究热流密度、质量流率及饱和温度对沸腾换热表面传热系数的影响。实验工况为:热流密度10~60 k W/m2、饱和温度15~25℃、质量流率50~200 kg/(m2·s)、干度0. 1~0. 9。结果表明:增加热流密度可实现强化换热,提高表面传热系数,使干涸现象提前发生,并加剧干涸;质量流率在低干度区间对表面传热系数的影响较小,在中干度和高干度区间表面传热系数与质量流率分别呈正相关;当热流密度较低时,在中干度区间,增大饱和温度会使表面传热系数降低;而在较高的热流密度下,增大饱和温度明显引起表面传热系数的上升。  相似文献   

4.
王金  李俊明 《制冷学报》2020,41(5):29-34
本文建立了制冷剂R1234ze(E)在微圆管内流动沸腾过程中的环状流模型,对传热和气液两相流动压降进行了模拟研究。综合考虑重力、表面张力及气液界面剪切力的影响,模拟分析了周向液膜不均匀分布特性及该特性对流动与换热的影响,经验证,计算结果与已有实验结果吻合较好。本文还研究了不同因素对环状流区域表面传热系数与压降的影响。模拟结果表明:在流动起始区域,截面液膜厚度的分布受重力作用影响,随着流动沸腾过程的进行,该影响作用开始减弱,且有重力作用时的环状流平均表面传热系数高于无重力作用时的环状流平均表面传热系数,随着重力加速度的增加,环状流的平均表面传热系数不断增大;随着质量流速的增大,表面传热系数与压降均随之增大;随着管径增大,表面传热系数与压降均随之减小。  相似文献   

5.
新型制冷剂R1234ze(E)(trans-1,3,3,3-tetrafluoropropene)因较低的GWP而被广泛关注,有望在热泵中作为R134a的替代品。本文对R1234ze(E)在内径为8 mm水平管内流动沸腾过程中摩擦压降特性进行实验研究,并在相同实验工况下与R134a进行对比。实验研究的流动沸腾换热的饱和温度为10℃,热流密度为5.0 k W/m~2和10.0 k W/m~2,质流密度范围为300~500 kg/(m~2·s),并分析质流密度、热流密度对R1234ze(E)和R134a饱和流动沸腾过程中摩擦压降的影响。结果表明,在相同工况下R1234ze(E)的流动沸腾过程的摩擦压降略大于R134a,如质流密度为500 kg/(m~2·s)时,R1234ze(E)的平均摩擦压降值比R134a大8.4%左右。最后,将实验结果同四种摩擦压降经验关联式进行比较分析。  相似文献   

6.
本文对水平细通道内CO_2流动沸腾换热过程中流态及其转变特性进行理论分析和可视化实验研究。根据可视化实验结果,更新了CO_2在低蒸发温度下的理论流动状态预测模型。实验工况为:热流密度(7. 5~30 k W/m2)、质量流率(50~600kg/(m2·s))、饱和温度(-40~0℃)、干度(0~1)、内径(1. 5 mm)。理论分析表明:质量流率对换热过程中经历的流态形式有决定性作用,热流密度对环状流-干涸区域、干涸区域-雾状流边界转变曲线影响较大,饱和温度对流态转变具有重要影响。可视化研究表明:基于理论流态图对于CO_2在细通道内流动沸腾换热的流态能够较好的预测,也能反映不同工况下流态的变化趋势,但理论流态图对干涸区域和雾状流区域预测偏差较大;在实验数据的基础上,增加了液气黏度比的无量纲因子,并提出一种新的临界热流密度预测模型。在考虑质量流率和热流密度影响的情况下,根据更新后临界热流密度预测模型和实验数据,引入沸腾数Bo对理论流态图中环状流-干涸区域、干涸区域-雾状流及间歇流/弹状流-环状流边界转变曲线进行了更新,可视化研究获得的流态数据中89. 4%符合更新后的CO_2理论流态预测模型。  相似文献   

7.
R134a水平微细管内流动沸腾换热的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
本文对R134a在水平微细管内的流动沸腾进行了实验研究。实验测试段选用了内径为1 mm、2 mm、3 mm共3种不同的水平光滑不锈钢管,实验的饱和温度为5~30℃,热流密度为2~70 k W/m2,流量范围为200~1500 kg/(m2·s)。实验结果表明:相同条件下,干涸前2 mm管较3 mm管换热系数平均增幅为11.6%,1 mm管较2 mm管换热增幅为26.3%,1 mm管径换热系数比3 mm管径平均增大40.8%。随着管径的减小,换热系数在更低的干度开始减小,质量流速和强制对流蒸发作用对换热系数的影响变小,热流密度的影响依然显著;塞状流和弹状流区域减小,泡状流和环状流区域增大。  相似文献   

8.
对R134a在水平直管和螺旋管内的沸腾换热特性进行了实验研究.在三个不同的蒸发温度(5℃、10℃和20℃),工质R134a的质量流量范围为100~400kg/(m~2·s)和干度范围为0.1~0.8的条件下,实验得到了R134a在水平直管和螺旋管内的沸腾换热系数随其质量流量和干度的变化关系,将水平直管和螺旋管内的沸腾换热特性数据进行了比较,结果显示,在实验条件下,卧式螺旋管的传热系数比直管的平均增加13.7%.  相似文献   

9.
实验测定了四氟甲烷(R14)在内径为6 mm的水平管内两相流动沸腾传热特性.实验测试的压力范围为0.22-0.60 MPa,热流密度范围19.9-73.6 kW/m2,质量流量范围370-862 kg/m2s.实验结果表明,传热系数随质量流量的增大而有一定程度的上升,而热流密度及饱和压力与传热系数呈明显的正相关关系.将实验数据与已有文献模型的计算结果进行比较发现,Kandlikar模型、Gungor-Winterton模型以及Shah模型与实验数据的关联性较好,平均偏差均在15%以内.  相似文献   

10.
丁峰  钱颂文 《制冷》1999,18(4):1-5,6
本文介绍低翅片管流动沸腾传热强化和折流杆流动沸腾两相流压降分析模型,并提出了螺纹管杆流动沸腾的试验结果和曲线。试验表明其压降甚小,而强化传热是光管束的2.7-5.9倍。  相似文献   

11.
R32/R134a水平内螺纹管内流动沸腾强化换热实验研究   总被引:2,自引:0,他引:2  
对非共沸混合制冷剂R32/R134a(25%Wt/75%Wt)在水平内螺纹强化管中的流动沸腾换热特性进行了研究。实验结果表明:在内螺纹强化管中的流动沸腾换热性能比在光管中有较明显的提高,强化管强化系数变化的大致范围为1.5~2.2。根据活化穴、二次流和毛细提升三者之间的相互作用,探讨了内螺纹强化管的强化机理;并从重力影响、非共沸混合工质组分差与二次流影响的角度上,对在环状流下混合工质剂2/R134a在内螺纹强化管和光管中流动沸腾换热时管子周向壁温的变化特征作出了分析。  相似文献   

12.
氨制冷剂存在可燃性和毒性,因此减少其在制冷系统中的充注量极为重要。小管径换热管通常可以提供更高的表面传热系数,这可以作为提升换热器紧凑性同时减少系统中充注量的有效方法。本文搭建了氨制冷剂管内流动沸腾换热及压降测试实验装置,测试了氨制冷剂在4 mm水平光管内的流动沸腾换热及压降,并分析了干度、质量流速及热流密度对换热及压降特性的影响。结果表明:流动沸腾换热表面传热系数随着干度的增加而增大,同时质量流速和热流密度越高,流动沸腾换热表面传热系数越大。此外,氨制冷剂在管内的两相摩擦压降也随着干度的增加而增大,在固定干度下,质量流速的升高导致压降增大。  相似文献   

13.
为了探究微通道内流动沸腾及传热现象的机理,以制冷剂R22为工质在矩形微通道内进行了流动沸腾及可视化实验。结果表明,在核态沸腾下传热系数受质量流率的影响较小,却随着热流密度的增加而快速增加;微通道的尺寸越小,传热效果越好,水力直径为0.92 mm和1.33 mm微通道内的传热系数比2 mm微通道内的传热系数分别提高约25%、12%;根据实验值与预测值的对比情况,在Oh H K等[15]和Yun R等[7]模型基础上拟合得到新的传热系数预测关联式,平均绝对误差降至8.8%;通过可视化实验发现,在临界热流密度下微通道内出现波浪式气体层的现象。  相似文献   

14.
实验研究了填充泡沫金属的圆管内制冷剂与润滑油混合物流动沸腾换热特性。实验对象为两根分别填充5PPI、90%孔隙率与10PPI、90%孔隙率泡沫铜的圆管,以及相同管径的光管。实验工况为蒸发压力995kPa,质流密度为10~30 kg/(m2.s),热流密度为3.1~9.3kW/m2,入口干度0.175~0.775,油浓度为0~5%。实验结果表明:纯制冷剂工况下,泡沫金属的存在强化流动沸腾换热,换热系数最多提高185%;含油工况下,泡沫金属强化换热的效果弱化;相同工况下,更小的孔径可以提高流动沸腾换热系数,相比5PPI泡沫金属的实验数据,10PPI的泡沫金属可以使换热系数最多提高0.6倍。基于流型建立了填充泡沫金属的圆管内制冷剂与润滑油流动沸腾换热系数的预测模型,预测模型与98%的实验数据误差在±30%以内。  相似文献   

15.
对R32在?5 mm的水平光管内的流动沸腾换热与压降特性进行试验研究和理论分析。试验的蒸发温度为5℃,质量流量范围为100~500 kg/(m2·s),热流密度为8~24 kW/m2。结果表明,沸腾换热系数在1~8 kW/(m2·K)之间,压降在1~4 kPa/m之间。沸腾换热系数随着干度增大而增大,质量流量的增大和热流密度的增大都有利于换热系数的增加。质量流量的变化对压降的影响比较明显。与R32在?7 mm管内流动传热性能相比,换热系数提高了30%左右。将得到的沸腾换热系数和压降试验数据与多个模型的预测结果进行比较,发现多数换热经验关联式的预测误差较大,仅有Fuji-Nagata关联式的预测值与试验值较为接近;压降的预测误差相对较小。  相似文献   

16.
开展了全氟甲烷(R14)纯质池内核态沸腾换热特性的实验研究,测量了不同热流密度和不同系统压力下的R14纯质池内核态沸腾换热数据,分析了热流密度和压力对沸腾换热特性的影响。实验结果同现有的经验关联式的计算结果进行了比较,对不同压力下R14沸腾换热提出了不同的关联式,为混合工质节流制冷等相关领域提供基础数据。  相似文献   

17.
王雨晨  方奕栋  苏林  杨文量  张昭 《制冷学报》2022,43(4):145-150+166
为研究平行通道直冷板的压降特性对换热的影响,本文对不同质量通量(118~1 300 kg/(m2 s))、入口过冷度(2.5~8 K)条件下低压制冷剂R1233zd(E)在平行通道直冷板内的摩擦压降进行了实验研究,分析了单相及两相摩擦压降以及气液相速度的变化规律。结果表明:在制冷剂单相情况下,随热流密度的增加,通道内的摩擦压降先减小后增加。当制冷剂进入两相状态后,摩擦压降随热流密度的增加而快速增长;质量通量的增加会使汽化核心的位置延后,导致摩擦压降变化趋势突变点的出现有所推迟。此外,在高热流密度下,制冷剂液相速度和气液相相对速度均有所增加;相同干度条件下,较高的质量通量使气液相相对速度增加,摩擦压降增速变快。  相似文献   

18.
制冷剂混合物水平微翅管内流动沸腾研究综述   总被引:1,自引:0,他引:1  
马虎根 《制冷学报》2001,19(4):29-34
本文对目前国内外制冷剂混合物在水平微翅管内流动沸腾特性的实验研究进行了综述。讨论了混合物在微翅管内流动沸腾的强化特性、替代制冷剂换热性能的比较和润滑油对换热的影响。同时,对进一步的研究提出了一些建议。  相似文献   

19.
本文对低压制冷剂R1233zd(E)在平行小通道内的流动沸腾换热过程进行了可视化实验研究,分析了制冷剂在平行通道内流型的演变与分布,在此基础上讨论了流型对换热特性的影响。结果表明:随热流密度的增加,在通道内观察到泡状流、段塞流、搅拌流和波形环状流;在较高的热流密度下,部分通道出现回流现象。此外,不同通道内流型的分布规律略有不同;通道中局部表面传热系数变化趋势随流型的演变可分为不同阶段,中部与出口处的局部表面传热系数呈现不同的变化趋势;当干度小于0.1时,表面传热系数几乎不受质量通量的影响;随着干度增加,表面传热系数与质量通量呈正相关。  相似文献   

20.
本文在分析国内外有关文献的基础上,综述了非共沸混合工质水平管内流动沸腾换热研究的成果和现状,并对该领域进一步的研究提出了一些看法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号