首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用一步水热法,在乙二胺的辅助下,制备了硫化钴/石墨烯气凝胶(CoS/GA)复合材料。通过X射线衍射法(XRD)、扫描电镜(SEM)、电化学性能测试对材料进行了表征和测试。结果表明:制备的材料晶型规整,30~100 nm的CoS粒子均匀地分布在石墨烯气凝胶上。用作超级电容器时,在电流密度0.5 A/g时,CoS/GA复合材料比电容值达574 F/g,是纯CoS的1.4倍;充放电循环1 000次后,比电容保持率为94.4%。硫化钴/石墨烯复合材料的电化学性能较好,具有较大的比电容和较好的循环稳定性,是一种可用于超级电容器的较有潜力的电极材料。  相似文献   

2.
通过简单的高温固相法制备了(MnCoNiCu)MoO4中熵钼酸盐,对其微观形貌、晶体结构和化学组成进行了深入研究。将其作为超级电容器电极材料,进行了相关电化学性能测试。测试结果表明,在1 A/g的电流密度下,(MnCoNiCu)MoO4中熵钼酸盐的比电容值为438.3 F/g;在15 A/g的电流密度下,经过10 000次循环充放电,初始比电容保持率为83.3%。证明了(MnCoNiCu)MoO4中熵钼酸盐材料在超级电容器中的潜在应用。  相似文献   

3.
利用高导电性的氮化钛纳米线作为聚苯胺的生长基质,有效减少电极材料的电荷传输电阻,提升聚苯胺的超级电容储能性能。以碳纤维作为柔性基底,采用晶种辅助水热结合电化学聚合法制备了柔性聚苯胺/氮化钛纳米线电极材料(PANI/Ti N),电极材料呈现高度有序的同轴核壳纳米线结构,且纳米线之间彼此分离,有利于电解液离子的传输,提升储能性能。电流密度为1 A/g时,比电容为403 F/g;电流密度从0.5 A/g增加到10.0 A/g时,比电容保持率为初始容量的53.4%,电流密度为5 A/g时,循环充放电1 000次后PANI/Ti N的电容保持率为79.1%,与PANI相比均有较大提升,表明PANI/Ti N具有较好的电化学储能性质。以PANI/Ti N电极材料为电极构建柔性全固态对称型超级电容器(PANI/Ti N//PANI/Ti N)考察其应用性。PANI/Ti N//PANI/Ti N柔性超级电容器在电流密度为1 A/g时,比电容可达100.2 F/g,且在不同角度弯曲后比电容无明显衰减。当功率密度为500 W/kg时,能量密度可达50.1 W·h/kg,且1个单元的该超级电容器可驱动红色...  相似文献   

4.
申振  戴亚堂  张欢  王伟  马欢  欧青海 《精细化工》2012,(12):1181-1185,1211
纳米线型导电聚合物是一种具有良好应用前景的超级电容器电极材料,该文用简易的原位化学氧化法制备了微孔炭/聚苯胺纳米线(MC/PANI)复合材料,并以此复合材料为活性物质制备工作电极,在1 mol/L H2SO4中,通过循环伏安、交流阻抗和恒流充放电技术考察了其电化学电容性能,结果表明,在0.2 A/g的电流密度下,MC/PANI电极首次充放电比电容可达到329 F/g,高于PANI电极的259 F/g,且MC/PANI电极电荷传递电阻(Rct)小于MC和PANI,可见纳米线型PANI可加强电极材料的电化学性能。  相似文献   

5.
在0.1 mol/L吡咯+0.2 mol/L Na Cl O4的乙腈溶液中加入不同含量[0,3%,6%,9%(体积分数)]的水,采用循环伏安法制备了聚吡咯(PPy)高分子膜。利用扫描电子显微镜(SEM)对其表面形貌进行了观察,利用恒电流充放电曲线研究了其电化学性能。比较了不同电流密度下不锈钢/聚吡咯(SS/PPy)比电容和能量密度,当电流密度由1 m A/cm2增大到5 m A/cm2时,PPy(6%)电极的比电容下降幅度最小,下降了21.6%。  相似文献   

6.
在0.1 mol/L吡咯+0.2 mol/L Na Cl O4的乙腈溶液中加入不同含量[0,3%,6%,9%(体积分数)]的水,采用循环伏安法制备了聚吡咯(PPy)高分子膜。利用扫描电子显微镜(SEM)对其表面形貌进行了观察,利用恒电流充放电曲线研究了其电化学性能。比较了不同电流密度下不锈钢/聚吡咯(SS/PPy)比电容和能量密度,当电流密度由1 m A/cm2增大到5 m A/cm2时,PPy(6%)电极的比电容下降幅度最小,下降了21.6%。  相似文献   

7.
采用低温化学氧化法合成了聚苯胺和聚吡咯纳米颗粒,并以聚苯胺和聚吡咯纳米颗粒为电极材料,组装成电化学电容器,利用测试循环伏安、交流阻抗和恒流充放电性能研究两者的电化学性能。结果表明,低温下合成的聚苯胺和聚吡咯呈纳米颗粒堆积状,粒径分别为200,300 nm;当电流密度为1 mA/cm2时,在1 mol/L H2SO4电解液中,聚苯胺比电容达480.30 F/g,聚吡咯比电容达205.51 F/g。  相似文献   

8.
以玉米芯为原料,经Zn Cl_2一步活化法制备超级电容器用电容炭电极材料。采用低温N_2吸附、扫描电镜(SEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)及X射线光电子能谱(XPS)等手段系统表征电容炭的微观结构及表面性质,并利用恒流充放电、循环伏安和漏电流等测试手段研究其在无机电解液体系(KOH)中的电化学性能。研究表明:在Zn Cl_2/玉米芯浸渍比为2:1、700℃的条件下活化1h可制备出比表面积为1340m~2/g、总孔容为1.135cm~3/g、中孔率高达97.7%的玉米芯电容炭。将其用作电极材料表现出良好的电化学特性,在50m A/g的电流密度下质量比电容为159F/g,2500m A/g电流密度下比电容仍可达137F/g,1000次循环后比电容保持率为92.5%,漏电流仅为1.9μA。结果表明:玉米芯电容炭具有良好的倍率特性和循环性能,是一种理想的电化学电容器用电极材料。  相似文献   

9.
分析了目前石墨烯和聚吡咯(PPy)用作电极材料的不足,详细介绍了近年来超级电容器用石墨烯/PPy复合电极材料的研究进展,指出石墨烯/PPy复合材料在能量转换和存储领域的未来发展方向.  相似文献   

10.
张燕  王淼  赵佳辉  冯宇  米杰 《化工进展》2022,41(10):5501-5509
碳基复合材料被认为是超级电容器广泛应用最有前景的电极材料之一。本文使用氧化石墨烯(GO)、硝酸钴[Co(NO3)2]、三聚氰胺为原料,利用钴对高温下热解碳源的催化作用,制备得到了氮掺杂石墨烯/碳纳米管/无定形炭(NC)复合材料,并测试了其电化学性能。探究了金属和三聚氰胺添加量对碳基复合材料结构和性能的影响,研究发现,在添加量分别为0.02mmol和0.3g时,制得的样品具有大比表面积(380.5m2/g)和高掺氮质量分数(6.29%),并在三电极系统中体现出优异的电化学性能,电流密度为0.5A/g时样品的比电容为137.1F/g,5A/g时比电容为113.5F/g,保持率为88.5%,具有优异的倍率性能,在循环5000圈后样品的容量保持率为104%,具有良好的循环稳定性,这归因于三维结构可以加快充放电过程中的离子转移和氮掺杂可提高材料润湿性和贡献部分赝电容,为超级电容器电极材料的制备提供了理论借鉴。  相似文献   

11.
柔性超级电容器具有灵活性高、充放电速度快、功率密度大、绿色环保、安全性高、成本低等优越性能,在可穿戴电子设备领域具有重要的应用价值。纯导电聚合物电极材料的循环稳定性和电化学性能有限,而导电聚合物复合其他导电材料形成的复合电极能改善其循环稳定性和电化学性能。根据近年来不同导电聚合物基柔性超级电容器电极材料的研究进展,介绍了以导电聚合物(聚苯胺、聚吡咯和聚噻吩)基复合材料作为柔性超级电容器电极材料的制备及其性能研究。  相似文献   

12.
通过在氧化石墨烯表面原位聚合苯胺制备聚苯胺阵列/石墨烯复合物,再将一定量的石墨烯加入到复合物分散液中,经水热反应制备了石墨烯/聚苯胺/石墨烯复合材料。利用SEM和FT-IR对其形貌和结构进行了表征,讨论了投料比、水热温度及水热时间对材料电化学性能的影响。结果表明,质量比PGO∶GO(后加的)=15∶1,180℃下水热反应4h,所得样品用作超级电容器电极时,表现出优异的电化学性能,当电流密度为1A/g时,其比电容为553F/g;且在电流密度为20A/g,1000次恒电流充放电后,其比电容保持率高达94.2%。  相似文献   

13.
刘淑玲  任静 《应用化工》2019,(1):104-108
分别采用物理球磨混合法、化学原位聚合法和化学原位聚合-还原法制备了聚吡咯/氧化石墨烯混合物、聚吡咯/氧化石墨烯(PPy/GO)和聚吡咯/还原氧化石墨烯(PPy/RGO)复合材料。通过三电极测试其电化学性能(循环伏安、恒流充放电和交流阻抗)。结果表明,通过化学原位聚合法制备的PPy/GO(304. 5 F/g)比电容远高于物理混合(16 F/g)和聚吡咯/还原氧化石墨烯(126. 4 F/g)。化学法原位聚合法制备PPy/GO最佳条件是冰浴条件下和加入表面活性剂对羟基苯磺酸钠。并通过X射线衍射(XRD)和扫描电子显微镜(SEM)对化学原位制备的PPy/GO组成、结构和形貌进行了表征。  相似文献   

14.
用化学沉淀法在活性炭(AC)表面和微孔内掺杂不同量的氢氧化镍,制备了氢氧化镍-活性炭[Ni(OH)2-AC]复合材料. 用X射线衍射(XRD)和氮气吸附等温线等对活性炭和复合材料进行表征,结果表明,所制材料为b-Ni(OH)2-AC复合材料. 对不同掺杂量的b-Ni(OH)2-AC复合材料的电化学性能进行了研究,循环伏安、恒流充放电实验表明,少量氢氧化镍掺入活性炭表面和微孔中,所得材料的比电容较活性炭有所提高,并具有良好的充放电性能;当氢氧化镍的掺入量为6%(w)时,所制备的超级电容器单电极表现出优良的电化学性能. 以活性炭电极作负极,复合材料作正极制成复合型超级电容器,循环性能测试发现,掺入6%(w)氢氧化镍的复合材料制成的Ni(OH)2-AC/AC复合型超级电容器比电容高达330.7 F/g,比活性炭(AC/AC)超级电容器比电容(245.6 F/g)提高了34.6%,且Ni(OH)2-AC/AC复合型超级电容器具有更好的循环充放电性能.  相似文献   

15.
冯艳艳  李彦杰  杨文  牛潇迪 《化工进展》2020,39(7):2734-2741
以葡萄糖为碳源,采用水热炭化法制备碳球,然后以氯化钴和氯化镍为钴源和镍源,六次甲基四胺为沉淀剂,采用水热法和高温处理合成一种核壳结构的碳球@钴镍金属氧化物纳米复合材料,并研究其作为超级电容器电极材料的储能性能。借助X射线衍射、扫描电镜和低温氮气吸附/脱附等对材料的形貌和结构进行表征。采用循环伏安、恒电流充放电及交流阻抗等对材料的电化学性能进行研究。结果表明:碳球的加入能有效改善钴镍金属氧化物的分散性,同时降低材料的电子转移阻力,进而提高其电化学性能。当电流密度为1A/g时,所得碳球@钴镍金属氧化物核壳型复合材料的比电容为984.8F/g;当电流密度增大10倍(10A/g)时,仍保留86.3%的初始比电容值。当电流密度为15A/g时,经过2000次恒电流充放电后复合材料的比电容量保持率为94.6%,体现出较好的循环稳定性能。  相似文献   

16.
以棕榈树须作为天然碳源和模板,利用化学气相沉积法制备出介孔碳/石墨烯复合材料,研究了复合材料的超级电容器性能。通过扫描电子显微镜、Raman光谱、比表面及孔径分析等对材料的形貌、结构、比表面积和孔径分布进行表征。采用循环伏安和恒电流充放电方法研究了超级电容器在1 mol/L H_2SO_4电解质溶液中的电化学性能。在三电极体系和1 A/g条件下,材料电容达到144 F/g。在二电极体系下,材料电容达到138 F/g,比三电极略有降低。同时,倍率性能优异,20 A/g条件下电容为78 F/g,与三电极体系接近。  相似文献   

17.
将具有法拉第赝电容但导电性较差的材料与具有良好导电性的石墨烯结合是提高超级电容器电极材料电容性能的合理策略。以水热法制备的Ni(OH)_2/石墨烯复合材料与生长有Co(OH)_2的泡沫镍制得修饰电极。用循环伏安法(CV)、恒电流充放电(CP)和电化学阻抗(EIS)测试了其在6 mol/L KOH溶液中的电容行为。实验表明,片状六边形Ni(OH)_2插入薄膜状石墨烯片层间,Ni(OH)_2/石墨烯/Co(OH)_2电极材料有良好的电容性能,在电流密度为1 A/g时比电容量达到了294 F/g,能量密度为36.75 Wh/kg。充放电循环1 000圈后比电容值仍是初始电容的92.7%。  相似文献   

18.
:纳米线型导电聚合物是一种具有良好应用前景的电容器电极材料,本论文中,用简易的原位化学氧化法制备了微孔碳/聚苯胺纳米线(MC/PANI)复合材料,并以此复合材料为活性物质制备工作电极,在1 mol/L H2SO4中,通过循环伏安、交流阻抗和恒流充放电技术研究了其电化学电容性能,研究结果表明:在0.2 A/g的电流密度下,MC/PANI电极首次充放电比电容可达到329 F/g, 高于PANI电极的259 F/g,且MC/PANI电极电荷传递电阻(Rct)小于MC和PANI,可见纳米线型PANI可加强电极材料的电化学性能。  相似文献   

19.
结合Li插层法制备的单层MoS2,分别采用溶液法和乳液法原位聚合制备了聚苯胺/MoS2复合材料。由FT-IR光谱对其结构进行表征,由电化学工作站测试其做电容器电极材料的电化学性能。结果表明,相同MoS2用量下,乳液法制备的聚苯胺/MoS2复合材料在0.8 A/g电流密度下的比电容为245 F/g,是溶液法聚苯胺/MoS2复合材料的3倍;充放电1000圈后的比电容保持率为82%,比溶液法聚苯胺/MoS2复合材料高11%,显示出更好的电容性能。  相似文献   

20.
本研究提供一种适用于超级电容器的沥青基活性炭-MnO复合材料。以石油沥青为碳源,乙酸锰为锰源,通过压片成型和一步活化法的结合,制备得到了MnO负载沥青基活性炭复合材料(PAC@MnO)。PAC@MnO具有高比表面积且孔道主要由微-介多级孔构成。作为电容器电极材料,在三电极体系下,研究了不同MnO负载量对PAC@MnO-x电极性能的影响,其中PAC@MnO-0.3电极在0.5 A/g电流密度下比电容高达344.5 F/g,在高电流密度为20.0 A/g下,仍具有190 F/g的比电容,表现出优异的倍率性能。将PAC@MnO-0.3与PAC@MnO-0组装成水系非对称超级电容器,在5.0 A/g电流密度下循环3 000圈后,其容量保持率高达87.24%,表现出优异的循环稳定性。MnO纳米粒子与PAC的均匀复合不仅显著提升了MnO的导电性,同时抑制了其在充放电过程中的体积膨胀,使PAC@MnO呈现出优异的电化学特性。此外,PAC丰富的多级孔结构为电解液离子的存储提供了大量的活性位点,并为电解液离子的快速传输提供通道。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号