首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对湿法炼锌冶炼过程中产出的铜砷渣的综合回收利用,在研究铜砷渣矿物学组成及热分解特性的基础上,开展了加压浸出铜及同步固砷工艺与铜、砷元素的行为研究,结果表明,在反应温度为135 ℃、反应时间为4 h、液固比为25、硫酸浓度为50 g/L、氧分压500 kPa、铁砷摩尔比为1的条件下,浸出渣中铜含量仅为2.03%,浸出率达到97.72%,砷含量达到26.06%,浸出率仅为4.02%;浸出液中Cu的浓度达到20.47 g/L,As浓度小于0.63 g/L;铜砷分离效果好。在反应过程中,Cu3As先发生氧化溶解,铜的浸出需要一定的时间,铜的浸出与砷的沉淀同时进行。浸出液pH值与浸出液中As浓度变化趋势基本一致,在反应前期砷与铁生成臭葱石产生的酸可以补充铜的浸出消耗的酸。  相似文献   

2.
采用锡盐共沉淀法从铜电解液中脱除砷、锑、铋,考察了锡价态、反应温度、锡用量、反应时间和溶液酸度等因素对杂质脱除效果的影响。结果表明,硫酸浓度174.04 g/L、铜浓度48.14 g/L、砷浓度16.54 g/L、锑浓度96.77 mg/L、铋浓度44.24 mg/L的电解液中加入锡盐,当净化条件为Sn(Ⅳ)/As质量比1.0、温度80 ℃、搅拌速度500 r/min、反应时间30 min时,As、Sb和Bi脱除率分别达到82.54%、86.63%和98.39%,而Cu和Ni损失率均小于0.2%。  相似文献   

3.
研究"硫酸化焙烧—酸浸—氰化"和"L-SX-EW"联合工艺处理含铜金精矿过程中,焙烧温度、酸浸酸度对铜、铁浸出率和酸浸液中Fe~(3+)浓度的影响。结果表明,在硫酸化焙烧温度为650℃、焙烧时间1 h、初始酸浸酸度40 g/L、浸出液固比3∶1、浸出温度85℃、浸出时间1 h条件下,铜、铁的浸出率分别为大于96%、21%,酸浸液中的Fe~(3+)浓度2.87 g/L。表明在不改变原有工艺的基础上通过调整焙烧温度和酸浸酸度两个关键工艺参数,可以达到提高铜浸出率的同时兼顾降低Fe~(3+)浓度的目标。  相似文献   

4.
研究"硫酸化焙烧—酸浸—氰化"和"L-SX-EW"联合工艺处理含铜金精矿过程中,焙烧温度、酸浸酸度对铜、铁浸出率和酸浸液中Fe~(3+)浓度的影响。结果表明,在硫酸化焙烧温度为650℃、焙烧时间1 h、初始酸浸酸度40 g/L、浸出液固比3∶1、浸出温度85℃、浸出时间1 h条件下,铜、铁的浸出率分别为大于96%、21%,酸浸液中的Fe~(3+)浓度2.87 g/L。表明在不改变原有工艺的基础上通过调整焙烧温度和酸浸酸度两个关键工艺参数,可以达到提高铜浸出率的同时兼顾降低Fe~(3+)浓度的目标。  相似文献   

5.
塔吉克斯坦铜锌锡金银多金属矿硫化矿物共生关系密切,尤其是毒砂含量较高。部分毒砂的可浮性较好,因此对硫化矿的分选造成了很大的困难。针对此种性质的矿石,采用铜锌混合浮选、铜锌分离、锌与毒砂和黄铁矿分离和锡石浮选的工艺流程,成功地实现了铜、锌、锡和毒砂的综合回收。获得了铜精矿品位20.56%,含银716.7 g/t,铜回收率80.97%,银回收率40.46%;锌精矿品位40.26%,回收率48.3%;锡精矿品位31.47%,回收率40.2%;砷精矿品位22.02%,含金0.43 g/t,含银118.39 g/t,砷回收率92.68%,金回收率90.39%,银回收率53.52%。该研究为类似复杂铜锌锡金银多金属矿的开发和利用提供了新的思路。  相似文献   

6.
基于高盐矿井水的零排放和资源化利用,采用BP-A-C-BP三隔室构型的双极膜电渗析处理高盐矿井水浓缩液。以河北某矿高盐矿井水为原水,经过预处理+RO+脱碳+浓水RO+ED浓缩,最终浓缩液TDS质量浓度达到93 040 mg/L,进行双极膜电渗析试验,探究了电流密度、循环流量以及极室电解质浓度对于双极膜电渗析产酸碱效果的影响。结果表明:电流密度10~40 mA/cm2,随着电流密度的增大,操作电压升高,电流效率和产能逐渐减小,能耗逐渐增加,最佳电流密度为30 mA/cm2;循环流量10~30 L/h,随着循环流量的增大,电流效率和产能上升、能耗降低,进一步提高循环流量至40 L/h时反而增加能耗,降低产能,最佳循环流量为30 L/h;极室电解质浓度不宜过低、过高,容易增加能耗,浓度适中时的双极膜电渗析的水解离效果最好,最佳极室电解质浓度为2%。初始盐室浓缩液4 L、酸室和碱室分别为去离子水1.5 L、极室2%硫酸钠溶液2 L,电流密度为30 mA/cm2,极室循环流量为60 L/h,其他各室循环流量为30 L/h,运行120 min时,酸、碱浓度分别为6.91%、5.38%,达到试验预期...  相似文献   

7.
针对某高砷复杂铜锌多金属矿,采用优先浮选工艺实现了高效分选。以自主研制的ZY为锌抑制剂,实现了铜锌矿物的有效分离;以自主研制的SY为砷抑制剂,降低了有用矿物中有害元素砷的含量。实验室最终获得的分选指标如下:铜精矿品位22.14%,铜回收率87.45%。锌精矿品位45.61%,锌回收率90.14%。银在铜精矿中的品位为890g/t,回收率66.45%,在锌精矿中的品位为105g/t,回收率12.27%,银总回收率为78.72%。  相似文献   

8.
肖祈春 《矿冶工程》2020,40(6):68-70
为从污酸中二级硫化分步除铜、砷,以湖南某铜冶炼企业污酸为研究对象,在硫化沉淀理论指导下,考察了氧化还原电位(ORP)、硫化剂种类对污酸中铜、砷去除效率的影响。结果表明: 通过控制ORP可以优先选择性硫化沉淀铜。以H2S为硫化剂,一级ORP为245 mV,二级ORP为10 mV,硫化沉淀后污酸中铜、砷含量分别为0.03 mg/L和0.22 mg/L; 而铜渣中铜、砷含量分别为3.09%和15.9%,砷渣中铜、砷含量分别为0.03%和23.90%,实现了二级硫化分步从污酸中除铜、砷。  相似文献   

9.
内蒙古某含银复杂多金属矿含银310.92g/t、铅4.65%、锌4.95%、铜0.44%、砷0.37%。矿石中铜、铅矿物共生关系复杂、嵌布粒度细、分离难度较大。经过多方案比较,采用了"铜铅部分优先浮选-铜铅混合精矿分离-铅、锌、砷顺序优先浮选"的工艺流程。最终获得的铜精矿中铜品位17.56%,铜回收率53.95%,银品位4 578.65g/t,银回收率20.20%;铅精矿中铅品位75.29%,铅回收率88.48%,银品位3 706.26g/t,银回收率65.85%;锌精矿中锌品位55.67%,锌回收率89.78%,银品位285.16g/t,银回收率7.38%;砷精矿中砷品位12.45%,砷回收率72.31%。  相似文献   

10.
铜烟灰矿物学基因特性研究及选择性浸出工艺   总被引:1,自引:0,他引:1  
通过MLA工艺矿物学自动检测技术、X射线荧光光谱、X射线衍射等现代测试技术,对铜烟灰进行了系统的工艺矿物学研究,结果表明,铜烟灰主要成分为铜铅锌铁砷硫酸盐,其中砷主要以硫酸盐和氧化物形式存在,具有良好的浸出特性。研究了液固比、酸度、反应温度、反应时间对砷浸出的影响,结果表明,液固比、酸度是影响砷浸出的重要因素; 在液固比10∶1、酸度100 g/L、反应时间30 min、反应温度60 ℃条件下,砷浸出率达到95%以上。铜烟灰中砷的选择性脱除实现了铜冶炼过程中砷的开路,为主体有价金属(铜、铅、铋等)的协同冶炼创造了良好条件。  相似文献   

11.
两段酸浸法浸出铜烟尘中的铜锌铟   总被引:1,自引:0,他引:1  
李学鹏  王娟  常军  王子阳 《矿冶工程》2020,40(1):109-113
以某铜烟尘为处理对象,采用常压酸浸回收铜锌、氧压酸浸回收铟的两段酸浸法浸出其中的铜、锌、铟。常压酸浸法浸出铜烟尘中锌和铜的最佳条件为:浸出温度95 ℃,硫酸浓度180 g/L,搅拌速率350 r/min,液固比4∶1,浸出时间120 min,此时铜、锌、铟浸出率分别为84.25%、95.35%和9.98%。采用氧压酸浸法浸出铜烟尘中的铟,最佳条件为:浸出温度220 ℃,搅拌速率650 r/min,釜内氧分压0.60 MPa,液固比4∶1,硫酸浓度180 g/L,浸出时间150 min,此时铜、锌、铟浸出率分别为93.12%、97.89%和99.50%。  相似文献   

12.
针对锌冶炼系统产生的污酸成分复杂、酸度高,砷及重金属浓度高的特点,利用湿法炼锌过程中产生的含有大量有价金属的回转窑渣对其进行处理。提出了"污酸浸出锌窑渣—常压臭葱石合成法沉砷—铁粉置换沉淀铜、砷—中和水解—赤铁矿法沉铁"的主体工艺,在实现污酸无害化处理的同时有效利用窑渣中的有价金属资源。结果表明,经二段逆流浸出后,铜、铁、锌的浸出率均在90%以上,砷的沉淀率高于95%,沉砷渣为晶型良好的臭葱石。溶液中铜的沉淀率超过99%,实验得到的赤铁矿渣含铁量达64.42%,可作为炼铁或制作铁红的原料。  相似文献   

13.
为了回收四川某铜矿浮选尾矿中的铜和锌, 以In-bac为浸矿菌种, 进行微生物浸出。考察了接种量、矿浆浓度、初始Fe2+浓度、浮选药剂(T-207和H-406)等因素对浸出效果的影响。结果表明, 采用两阶段微生物浸出工艺, 尾矿中铜、锌浸出效果较好, 第一阶段微生物浸出最佳条件为:接种量10%、矿浆浓度80 g/L、初始Fe2+浓度1.5 g/L, 尾矿中铜离子和锌离子浸出率分别为21.67%和79.67%, 此浸渣再次调浆后, 采用改进型无铁9K培养基, 无接种细菌微生物浸出, 当初始pH值为2.0、矿浆浓度为80 g/L、初始Fe2+浓度为0 g/L, 尾矿中铜浸出率达到36.97%, 锌浸出率为92.37%, 浸出率分别提高了15.30个百分点和12.70个百分点。浮选药剂T-207和H-406均对尾矿微生物浸出有不利影响。  相似文献   

14.
采用Lix 984N对含杂质锌、砷、铁、锑的硫酸铜溶液进行了铜萃取分离和锌回收研究,解决了含多种杂质的硫酸铜溶液传统沉淀法存在的净化分离困难问题。研究结果表明,铜萃取分离采用3级萃取、1级洗涤和2级反萃,可得到锌、砷、铁、锑含量均低于2 mg/L的符合电积要求的硫酸铜溶液。萃余液采用Ca CO3预中和除去大部分砷、铁、锑,再用Na2CO3沉锌,得到含锌大于40%的高锌渣。  相似文献   

15.
液膜萃取法处理含铜废水的研究   总被引:1,自引:1,他引:0  
探讨了以N902作流动载体, Mx-1作表面活性剂制备的乳化液膜对某治污厂含铜废水的处理情况。研究了内相酸浓度、载体用量、表面活性剂用量、油内比、乳水比、外相初始pH值等因素对铜萃取率的影响。实验结果表明: 当载体浓度(体积分数, 下同)3%、表面活性剂浓度5%、油内比1∶1、内相酸浓度2 mol/L、废液初始pH值大于4、乳水比1∶5时处理含铜废水, Cu2+的萃取率可达95%以上, Cu2+的富集浓度可达14 800 mg/L。而且该乳化液膜稳定性好, 溶胀小, 乳水分离快, 破乳容易。  相似文献   

16.
针对锌冶炼系统产生的污酸成分复杂、酸度高,砷及重金属浓度高的特点,利用湿法炼锌过程中产生的含有大量有价金属的回转窑渣对其进行处理。提出了“污酸浸出锌窑渣-常压合成臭葱石法沉砷-铁粉置换沉淀铜、砷-中和水解-赤铁矿法沉铁”的主体工艺路线,在实现污酸无害化处理的同时有效利用窑渣中的有价金?属资源。结果表明:经二段逆流浸出后下铜、铁、锌的浸出率均在90%以上,砷的沉淀率高于95%,沉砷渣为晶型良好的臭葱石。溶液中的铜沉淀率超过99%,实验得到的赤铁矿渣含铁量达64.42%,可作为炼铁或制作铁红的原料。  相似文献   

17.
铅阳极泥选择性脱铜试验研究   总被引:1,自引:1,他引:0  
采用选择性脱铜—混酸浸锑、铋—硝酸脱铅—火法熔炼回收贵金属工艺综合回收铅阳极泥中的有价金属。重点介绍了该工艺中选择性脱铜的试验研究。确定了最佳脱铜条件:浸出温度28℃,初始酸度H2SO420 g/L,鼓空气浸出3 h,液固比L/S=5/1(mL/g),添加剂Fe3+浓度1 g/L;在该条件下,铜的平均脱除率为91.30%,锑的平均浸出率仅为2.11%,Bi,Pb,Au,Ag等不被浸出。该研究取得了较好的选择性脱铜效果,有效解决了铅阳极泥传统湿法处理工艺中存在的金属分离不彻底、产品质量不高等问题。  相似文献   

18.
根据某含砷铜锌矿石的原矿性质,进行了多种药剂的条件试验和闭路试验研究,试验结果表明,采用铜优先浮选工艺和合理的药剂条件,可以有效地实现铜锌分离,组合抑制剂石灰+Y-As对毒砂的抑制效果好。试验室小型闭路试验可获得铜精矿含铜20.96%、锌6.88%、砷0.43%,铜回收率为75.20%,锌回收率为1.39%;锌精矿含铜0.45%、锌48.36%、砷0.35%,锌回收率为92.86%。  相似文献   

19.
广西某高砷铜锌矿选矿工艺研究   总被引:1,自引:1,他引:1  
根据矿物特性,对广西某地高砷铜锌矿进行了浮选分离研究,采用脱碳-优先选铜-锌硫混浮分离的工艺流程,利用FN作砷矿物的抑制剂,有效地解决了铜、锌精矿含砷高的问题。试验获得了铜、锌精矿含砷分别为0.26%、0.18%,铜、锌精矿回收率分别达80.23%、90.24%。  相似文献   

20.
罗凯  徐洁 《矿冶工程》2006,26(1):65-67
通过实验研究了影响离子交换膜电解脱铜效率的各种因素, 包括电流密度、极距、阳极室内硫酸起始浓度、电解温度、脱铜程度, 确定了离子交换膜电解脱铜的最佳工艺条件为: 极距20 mm, 阳极室内硫酸浓度10 g/L, 电解温度45 ℃, 当铜离子浓度大于5 g/L时, 采用大电流密度(220 A/m2)电解, 当铜离子浓度小于5 g/L时, 采用小电流密度(160 A/m2)电解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号