首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyaniline (PANI) film electrodeposited in HCl medium using cyclic voltammetry (CV) with an upper potential limit of 0.90 V, exhibited an inductive behavior. PANI films deposited with different conditions were subjected to various applied potentials and the impedance characteristics were recorded through electrochemical impedance spectroscopy (EIS). The impedance results clearly reveal the existence of inductive behavior to PANI. Inductive behavior was observed for PANI films deposited with conditions which favor benzoquinone/hydroquinone (BQ/HQ) formation and further evidenced by X-ray photoelectron spectroscopy (XPS). A comparative analysis of the EIS and XPS results of PANI films prepared under similar conditions with the upper potential limits of 0.75 and 0.90 V, respectively, clearly documented that the presence of BQ/HQ, the degradation product of PANI, formed during the electrochemical polymerization at the upper potential limits causes inductive behavior to PANI.  相似文献   

2.
In order to optimize the electrode composition and performance of Polymer Fuel Cells and to reduce the production cost of membrane electrode assemblies (MEAs), different MEAs using different catalyst powders, carbon supported and unsupported catalysts with different proton conducting electrolyte powder (Nafion) content were produced by using a dry powder spraying technique developed at German Aerospace Research Center (DLR, Deutsches Zentrum fuer Luft- und Raumfahrt). The electrochemical characterization was performed by recording current-voltage curves and electrochemical impedance spectra (EIS) in the galvanostatic mode of operation at 500 mA cm−2. The evaluation of the measured impedance spectra with an adequate equivalent circuit shows that the cathode of the fuel cell is very sensitive to the electrode composition whereas the contribution of the anode is very small and invariant to the electrode composition. Furthermore, it could be shown for the first time using electrolyte powder in the electrodes that the charge transfer of the cathode decreasing monotonically with increasing electrolyte content in the cathode. These findings suggest that with increasing electrolyte content in the electrodes, in particular in the cathode, the utilization degree of the catalyst increasing linearly with increasing electrolyte content in the electrode.  相似文献   

3.
Faster oxygen transport is critical to guarantee reliable power output of polymer electrolyte membrane fuel cells (PEMFCs). In order to enhance oxygen transfer in a porous electrode especially in the case of water flooding, water-proof oil (dimethyl-silicon-oil (DMS)) was introduced into the conventional Pt/C electrode. Owing to the capability of electrochemical impedance spectroscopy (EIS) in discriminating individual contribution of ohmic, kinetic, and mass transport from all PEMFC processes, EIS was carried out to evaluate the effect of the DMS on the oxygen reduction reaction (ORR). The equivalent circuits corresponding to the EIS spectra were employed. The parameters in the equivalent circuits were obtained by curve fitting to the EIS spectra with the aid of the frequency response analysis software (FRA) attached in the electrochemical station Autolab PGSYAT302. The EIS analysis has shown that the introduction of DMS reduces the oxygen diffusion resistance as well as the charge transfer resistance in the flooded state. The single cell tests show that even in the case of normal operating condition the accumulated water with PEMFC operation also worsens the oxygen transfer in the conventional Pt/C gas diffusion electrode (GDE) with more and more water produced at the cathode. GDE containing DMS, which is defined as a flooding tolerant electrode (FTE), is fortunately quite good at alleviating water flooding. Success of the FTE in alleviating water flooding is ascribed to (1) its high oxygen transfer flux due to the higher solubility of oxygen in DMS than in water as long as parts of pores are occupied beforehand by DMS rather than by water, and (2) enhanced hydrophobic property of the FTE with DMS adsorption on the walls of the pores, which makes more hydrophobic pores be open to oxygen transport.  相似文献   

4.
Solid oxide fuel cells (SOFC) for mobile applications are developed and investigated at the German Aerospace Center (DLR) in Stuttgart. Therefore a light-weight stack design was developed in cooperation with the automotive industry (BMW/Munich, Elring-Klinger/Dettingen, ThyssenKrupp/Essen) and the Research Center Jülich (FZJ). This concept is based on the application of stamped metal sheet bipolar plates, into which the SOFC cells are integrated by brazing technology. For the development and the investigation of the SOFC cells and short stacks, the electrochemical impedance spectroscopy (EIS) is an important and useful characterization method. The paper concentrates on the investigation and on the electrochemical testing of the SOFC short stacks with sintered anode-supported cells (ASC). The short stacks were electrochemically characterized mainly by electrochemical impedance spectroscopy, by current-voltage measurements and by long-term measurements. The cells and stacks were operated at different temperatures, varying fuel gas compositions, different fuel gas flow rates and at different electrical current loads. The influence of these operating conditions on the electrochemical performance of the short stacks is outlined. The nature of losses, e.g. ohmic and the polarization resistances of the electrodes were examined and determined by fitting of the impedance spectra to an equivalent circuit.  相似文献   

5.
The disbondment of protective organic coatings under excessive cathodic protection potentials is a widely reported coating failure mechanism. Traditional methods of evaluating cathodic disbondment are based on ex situ visual inspection of coated metal surfaces after being exposed to standard cathodic disbondment testing conditions for a long period of time. Although electrochemical impedance spectroscopy (EIS) has been employed as an effective means of evaluating various anti-corrosion properties of organic coatings; its application for assessing the cathodic disbondment resistance of coatings has not been sufficiently exploited. This paper reports an experimental study aimed at developing EIS into a tool for in situ measurement and monitoring of cathodic disbondment of coatings. A clear correlation between EIS parameters and the disbonded coating areas has been confirmed upon short term exposure of epoxy-coated steel electrodes to cathodic disbondment conditions; however the degree of this correlation was found to decrease with the extension of exposure duration. This observation suggests that EIS loses its sensitivity with the propagation of coating disbondment, and that in order to achieve quantitative determination of the coating cathodic disbondment localized EIS measurements are required to measure the parameters related to local disbonded areas.  相似文献   

6.
K. Al-Muhanna  K. Habib 《Desalination》2010,250(1):404-407
The corrosion of four types of alloys, under a dynamic condition, has been studied in continuous fresh seawater system using electrochemical impedance spectroscopy (EIS) technique. The materials used in this study were stainless steel 304, Cu-Ni 70-30, Hastelloy G-30, and titanium. The total exposure time of the test was 180 days, in continuous fresh seawater of the Gulf in Kuwait. The EIS tests were carried out by using EG&G software and hardware instrument. Electrochemical parameters such as the polarization resistance (RP), solution resistance (RSol), and the double layer capacitance (CdL) of these alloys were determined. Then the obtained EIS parameters were used to study the effect of the seasonal change of the Gulf seawater on the corrosion behavior of the tested materials. All the obtained EIS parameters showed that the seasonal changes of the Gulf seawater have a significant effect on controlling the rate of the formation of the marine bio-film on the surface of tested materials. Consequently, the corrosion behavior of the materials tends to vary as a function of the rate formation of the marine bio-film on the surface of tested materials.  相似文献   

7.
Glassy carbon electrodes (GCE) were modified with poly(glutamic acid) acid films prepared using three different procedures: glutamic acid monomer electropolymerization (MONO), evaporation of poly(glutamic acid) (PAG) and evaporation of a mixture of poly(glutamic acid)/glutaraldehyde (PAG/GLU). All three films showed good adherence to the electrode surface. The performance of the modified GCE was investigated by cyclic voltammetry and differential pulse voltammetry, and the films were characterized by atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). The three poly(glutamic acid) modified GCEs were tested using the electrochemical oxidation of ascorbic acid and a decrease of the overpotential and the improvement of the oxidation peak current was observed. The PAG modified electrode surfaces gave the best results. AFM morphological images showed a polymeric network film formed by well-defined nanofibres that may undergo extensive swelling in solution, allowing an easier electron transfer and higher oxidation peaks.  相似文献   

8.
The proton transport mechanism in fully hydrated Nafion 117 membranes was examined via electrochemical impedance spectroscopy (EIS) and steady-state current–potential measurements both in a symmetric H2, Pt|Nafion|Pt, H2 cell and in a H2, Pt|Nafion|Pt, air PEM fuel cell with hydrogen partial pressure values, PH2, varied between 0.5 kPa and 100 kPa. In agreement with recent studies it is found that for low PH2 values the steady-state current–potential curves exhibit bistability and regions of positive slope. In these regions the Nyquist plots are found to exhibit negative real part impedance with a large imaginary component, while the Bode plots show a pronounced negative phase shift. These observations are consistent with the mechanism involving two parallel routes of proton conduction in fully hydrated Nafion membranes, one due to proton migration in the aqueous phase, the other due to proton transfer, probably involving tunneling, between adjacent sulfonate groups in narrow pores. The former mechanism dominates at high PH2 values and the latter dominates in the low PH2 region where the real part of the impedance is negative.  相似文献   

9.
Polycarbazole (PCz) and copolymerization of carbazole (Cz) and N-p-tolylsulfonyl pyrrole (pTsp), P(Cz-co-pTsp), thin films have been cyclovoltammetrically coated onto carbon fiber electrodes as an active functionalized microelectrode in sodium perchlorate (NaClO4)/acetonitrile (ACN) medium. The resulting thin films of homopolymer and copolymer were characterised by using Fourier transform infrared reflectance spectroscopy (ATR-FTIR), energy dispersive X-ray (EDX) point analysis, scanning electron microscopy (SEM) and atomic force microscopy (AFM). An electrical impedance study on the prepared electrodes is reported in the present paper under different feed ratios of [pTsp]0/[Cz]0 during electrochemical impedance spectroscopic (EIS) measurements. Specific capacitance (Csp) were calculated, P(Cz-co-pTsp) in feed ratio of [pTsp]0/[Cz]0 = 200 has preserved more capacitive behavior especially at lower frequency (Csp = ∼156 mF g−1) than polycarbazole (Csp = ∼2.1 mF g−1. The electrochemical impedance data fitted to three different equivalent models were used to find out numerical values of the proposed components.  相似文献   

10.
Electrochemical impedance spectroscopy (EIS) has been used to study multilayer films containing anionic iron-substituted silicotungstate [SiW11FeIII(H2O)O39]5− (SiW11Fe) and positively charged poly(ethylenimine) self-assembled by the layer-by-layer method on glassy carbon and indium tin oxide electrodes. The effect of the charge of the outermost layer of the multilayer assembly on the electron transfer of soluble species was studied using the redox probes [Fe(CN)6]3− and [Ru(NH3)6]3+; cyclic voltammetry indicating that the surface charge has a significant effect on the process. EIS demonstrated that the electrostatic attraction or repulsion between the surface and the redox probes plays a significant role. Analysis of the impedance spectra showed that the charge transfer resistance increases with an increasing number of bilayers for both redox probes and that the porosity of the multilayer film, which varies with the electrode substrate, also has a significant effect on the electrochemical response.  相似文献   

11.
Solvent polymeric membranes based on quaternary ammonium salt tridodecylmethylammonium chloride (TDDMACl) with variable concentration of lipophilic inert electrolyte (ETH 500), plasticized with solvents of different nature were investigated by potentiometry and electrochemical impedance spectroscopy. DOS-plasticized membranes exhibited increased selectivity to divalent anions in agreement with the phase-boundary potential model. Conductivity mechanism in such membranes was proposed on the basis of the data on conductivity, activation energy of conductivity and pre-exponential factor and assuming the formation of electrolyte-containing water droplets in the membrane, facilitated by ETH 500.  相似文献   

12.
Meiling Liu  Meiling Wang  Qingji Xie 《Polymer》2006,47(10):3372-3381
Combined measurements of piezoelectric quartz crystal impedance (PQCI) and electrochemical impedance (EI) were utilized to monitor in situ adsorption of two proteins (bovine serum albumin and fibrinogen) onto the hydrophilicity-controllable surfaces of polypyrrole (PPY) doped with dodecyl benzene sulfonate (DBS). Three of these polymer films, PPY/DBS-I, PPY/DBS-II and PPY/DBS-III, were obtained by galvanostatic electropolymerization of pyrrole in aqueous solutions containing 0.6, 1.2 and 2.0 mmol L−1 sodium dodecyl benzene sulfonate (SDBS), respectively. The PPY/DBS-II obtained from electropolymerization of pyrrole in the presence of 1.2 mmol L−1 SDBS (the critical micelle concentration of SDBS in aqueous solution, CMC) exhibited the greatest hydrophobicity, as suggested by contact angle measurement. And the saturation-adsorption amounts for both proteins were found to be greatest on the surface. The kinetics and adsorption mechanisms of both proteins adsorbed on these three surfaces were discussed. Langmuir and Freundlich models were used for explaining the adsorption behavior of proteins, giving that Langmuir model is better for bovine serum albumin (BSA) and both model are not so available for fibrinogen.  相似文献   

13.
The use of three-electrode techniques involving an independent reference electrode is invaluable in determining the overpotential losses at solid oxide fuel cell (SOFC) electrodes. However, there are numerous barriers to achieve the accurate measurement of such overpotentials in an SOFC. Furthermore electrochemical impedance spectroscopy (EIS) is commonly used to analyse the processes occurring on SOFC electrodes, and there has been considerable work in establishing viable three-electrode techniques for EIS experiments under open circuit conditions. However, the three-electrode techniques currently developed for EIS experiments are not well suited for conditions of high load, or changing gas compositions; either intentionally or under diffusion limiting conditions. This paper reports a solution for commonly used pellet cells, which mitigates these problems. The paper presents a method using EIS to correct for errors when measuring the working electrode overpotential during polarisation arising from a shift in the electrolyte current distribution from the primary to the secondary current distribution under load. This technique enables meaningful overpotentials to be calculated using experimentally simple cell geometries under conditions where they cannot normally be accurately measured.  相似文献   

14.
Magnetite nanoparticles were supported on carbon paste electrode and characterized by low scan rate voltammetry and electrochemical impedance spectroscopy (EIS) to obtain mechanistic information related to its oxidation and reduction in acid media.The voltammograms showed only one reduction and one oxidation peak for the supported magnetite, which were attributed to formation of ferrous ion and ferric oxide, respectively. Both peaks are fairly wide, indicating complex mechanisms.Using EIS, a mechanism showing up to three time constants, capacitive all of them, was evidenced, both in anodic and cathodic domain. These were attributed to charge transfer at the highest frequencies, adsorption of generated species at intermediate frequencies, and proton adsorption at low frequencies. Discussion about the nature of the adsorbed species and the concerned mechanism for each domain is developed.  相似文献   

15.
The most common methods used to characterize the electrochemical performance of fuel cells are to record current–voltage U(i) curves. However, separation of electrochemical and ohmic contributions to the U(i) characteristics requires additional experimental techniques. The application of electrochemical impedance spectra (EIS) is an approach to determine parameters which have proved to be indispensable for the development of fuel cell electrodes and membrane electrode assemblies (MEAs). This paper proves that it is possible to split the cell impedance into electrode impedances and electrolyte resistance by varying the operating conditions of the fuel cell (current load) and by simulation of the measured EIS with an equivalent circuit. Furthermore, integration in the current density domain of the individual impedance elements enables the calculation of the individual overpotentials in the fuel cell and the determination of the voltage loss fractions.  相似文献   

16.
In order to establish electrochemical impedance spectroscopy (EIS) as a viable quantitative method for characterization of latex film formation, three waterborne acrylate and styrene–acrylate polymer dispersions were periodically analyzed during a course of 2 weeks. Impedance spectra were fitted on the base of equivalent circuit consisting of a capacitor in parallel with a Warburg element representing film capacitance and the extent of ion diffusion through the film. Calculated EIS parameter values showed a decrease in Warburg diffusion over time, which is a result of particle coalescence and in agreement with the established theory of latex film formation. Atomic force microscopy (AFM) of the samples showed a smoothing of the surface and blurring of interparticle boundaries which confirmed that EIS can be used to study film formation of latex.  相似文献   

17.
The electrochemical impedance spectroscopy (EIS) of epoxy-coated aluminum alloy LY12 has been investigated during exposure to 3.5% NaCl solution. Using the continuous simulation of EIS by expanded general electrical model, the time-dependent impedance model of the alloy/coating/solution system was deduced. The results shown that the composite electrode displayed a barrier behavior before water and oxygen penetrated to alloy base. After water and oxygen reached the base, the impedance associated with corrosion of alloy base changed with the immersion time as following: (i) active corrosion period at the beginning (double-layer capacitance, Cdl, in parallel to the charge transfer resistance of electrochemical corrosion Rct), (ii) impeding of the diffusion of corrosion production at the intermediate period as a result of the presence of coated film (a constant phase element Zdiff was additionally in series with Rct), and (iii) appearance of the characteristic impedance related to Cl ion-participating reaction with alloy base at the later stage. From the linear part of ln Cct0.5 curve in the early immersion stage, the apparent diffusion coefficient of water was obtained. The diffusion coefficient of water and Cl ion through the coating was also calculated by the required time for diffusion of permeation species through the coating to the metal interface obtained from the simulation of EIS data by which the occurrence of characteristic impedance element(s) corresponding to special species arrival can be determined.  相似文献   

18.
1-Octadecanethiol (C18SH) monolayers were self-assembled on the fresh and active copper surface pretreated by nitric acid etching method. The surface properties of the alkanethiol-modified copper electrode in halide-containing solutions were characterized systematically by using several electrochemical methods, including polarization curves, cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN). The results show that C18SH self-assembled monolayers (SAMs) onto copper provide a flexible method that can protect the underlying copper against corrosion. With the immersion time of SAMs-coated copper electrode in NaCl and HCl corrosive solutions increasing, a slow loss of corrosion protection ability of SAMs indicates dynamic processes occurring at the electrode/solution interface and in the monolayers, such as expansion of the defects and transport of corrosive ions through defects of SAMs. Electrochemical noise (EN) is employed to detect the alkanethiol-modified copper surfaces immersed in HCl solution. This observation suggests the pitting process associate with dynamic processes in the 1-octadecanethiol layer.  相似文献   

19.
We investigated the insulation performance of sub-micrometer parylene C films over time using electrochemical impedance spectroscopy (EIS). For this, interdigitated electrodes were fabricated and completely encapsulated with parylene C in thicknesses of 50, 100, 200, and 500 nm. The EIS was measured in phosphate buffered saline (PBS) solution under an accelerated aging condition at 90 °C over 45 days. To analyze the EIS data, the equivalent circuit models of coating at different stages of coating degradation were used and the lumped circuit parameters of the best fitted equivalent circuit model were extracted by curve fitting. The analysis of impedance using the equivalent circuit model and the FTIR measurements suggest that sub-micrometer parylene C coatings exhibited delamination resulting from water diffusion from the top surface as soon as being immersed in PBS solution, although the degree of delamination varied depending on the film thickness. The penetration of water through sub-micrometers thick parylene C films can occur as quickly as the film is in contact with solution, unlike for thicker coatings in several micrometers where water diffusion would be saturated before water reaches the bottom surface of the coating.  相似文献   

20.
Electrochemical behaviour of polyaniline–polyurethane (PANi–PU) antifouling coating in 3.5 wt% NaCl is studied by electrochemical impedance spectroscopy (EIS). A thick coating (∼1 mm) of 10, 15 and 20% PANi in marine grade PU, is cast over corrosion resistant aluminium alloy 2024 and its impedance characteristics are measured by EIS and compared with neat PU. On addition of 10% PANi, the impedance of the coating drastically comes down from 109 to 107 Ω. 20% is the maximum processable amount of PANi for the selected PU system. The coatings are exposed to 3.5 wt% NaCl and its impedance characteristics are monitored as a function of time. Changes in the impedance characteristics of the systems were found to occur as a function of the exposure time in all cases, though their evolution with time showed marked differences with PANi content. Water sorption and break down frequency are derived from the experimental results and analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号