首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A milling process to reduce kaolin to amorphous phase in the presence of KH2PO4 or NH4H2PO4 and allow mechanochemical (MC) reaction for incorporation of KH2PO4 and NH4H2PO4 into the kaolin structure was investigated in this work. Mixtures of kaolin and KH2PO4 and NH4H2PO4 in separate systems were prepared by milling in a planetary ball mill. Tests with kaolin contents ranging from 25 to 75 wt.% and mill rotational speeds from 200 to 700 rpm were performed to evaluate incorporation of KH2PO4 and NH4H2PO4 and release of K+, NH4+ and PO43− ions into solution. Analyses by XRD, DTA and ion chromatography indicated that the MC process was successfully applied to incorporate both KH2PO4 and NH4H2PO4 into the amorphous kaolin structure. Release of K+ and PO43− ions from the system (kaolin-KH2PO4) when dispersed in water for 24 h reached only up to 10%. Under similar conditions for the system (kaolin-NH4H2PO4), release of NH4+ and PO43− ions reached between 25 and 40%. These results indicated that the MC process can be developed to allow amorphous kaolin to act as a carrier of K+, NH4+ and PO43− nutrients to be released slowly for use as fertilizer.  相似文献   

2.
The aim of the study was to investigate the possibility of calcium and phosphorus ion implantation into an oxide film applied onto titanium during anodic passivation. The corrosion resistance of modified titanium in Tyrode's physiological solution has been identified. Anodic oxidation was carried out in two solutions. The first contained 20 g dm−3 NaH2PO2 in 4.3 M H3PO4 (K1), whereas the other, 20 g dm−3 Ca(H2PO2)2 in 4.3 M H3PO4 (K2). Voltage of 100 and 150 V was applied. It has been found out that it is possible to incorporate Ca and P into the emerging passive layer. The application of the voltage of 150 V makes it very porous. It has been also demonstrated that titanium so modified presents higher resistance to corrosion in the investigated environment than titanium not modified in Tyrode's solution.  相似文献   

3.
The precipitation and separation performance of various binary type 1 salt-water mixtures was systematically studied for the first time in a continuously operated laboratory plant. The aim was to find a field of operation for the salt separator where salts can be separated with high efficiency. Experiments with aqueous solutions of the salts NaNO3, KNO3, Ca(NO3)2, K2CO3, KHCO3, (NH4)2CO3, K3PO4, K2HPO4, KH2PO4, NaCl, KCl, NH4Cl and (NH4)2SO4 were carried out at 30 ± 0.5 MPa varying the salt separator temperature from sub-critical to supercritical. For most of these salts separation efficiencies ranging from 80 to 97% were obtained. For the nitrates the separation efficiency increased in the order NaNO3 < KNO3 < Ca(NO3)2, whereas for potassium salts the separation efficiency of the phosphates was significantly higher than that of KNO3. Considerable hydrolysis of the phosphate and the hydrogen phosphate salts in supercritical water was found, although this had no negative influence on the phosphate separation efficiency. It was found that the ammonium salts decompose in supercritical water, probably to ammonia and the corresponding mineral acids, leading to reduced separation of the ammonia due to its high solubility in supercritical water.  相似文献   

4.
M. Reffass 《Electrochimica acta》2009,54(18):4389-4396
Pitting corrosion of carbon steel electrodes in 0.1 M NaHCO3 + 0.02 M NaCl solutions was induced by anodic polarisation. The evolution of the breakdown potential Eb with the phosphate concentration was investigated by linear voltammetry. Eb increased from −15 ± 5 mV/SCE for [HPO42−] = 0 to 180 ± 40 mV/SCE for [HPO42−] = 0.02 mol L−1. During anodic polarisation (E = 50 mV/SCE), the behaviour of the whole electrode surface, followed by chronoamperometry, was compared to the behaviour of one single pit, followed via the scanning vibrating electrode technique (SVET). The addition of a Na2HPO4 solution after the beginning of the polarisation did not lead to the repassivation of pre-existing well-grown pits. The corrosion products forming in the pits were identified in situ by micro-Raman spectroscopy. They depended on the phosphate concentration. For [HPO42−] = 0.004 mol L−1, siderite FeCO3 was detected first. It was oxidised later into carbonated green rust GR(CO32−) by dissolved O2. The beginning of the process is therefore similar to that observed in the absence of phosphate. Finally, GR(CO32−) was oxidised into ferrihydrite, the most poorly ordered form of Fe(III) oxides and oxyhydroxides. Phosphate species, adsorbing on the nuclei of FeOOH, inhibited their growth and crystallisation. For [HPO42−] = 0.02 mol L−1, siderite was accompanied by an amorphous precursor of vivianite, Fe2(PO4)3·8H2O. This shows that, in any case, phosphate species interact strongly with the iron species produced by the dissolution of steel.  相似文献   

5.
A novel process for the deposition of a hydroxyapatite (HA) coating on a smooth implant surface has been developed. Specimens were firstly subjected to electrodeposition at −1.8 V (versus Ag/AgCl) in a mixed solution of 0.042 M Ca(NO3)2·4H2O and 0.025 M NH4H2PO4 at 85 °C for 5 s, and then post-treated in 1 M NaOH solution for 30 min. The experimental results showed the specimens prepared by the designed process to have better adhesion properties than those prepared by the traditional electrodeposition process.  相似文献   

6.
A carbon coated Li3V2(PO4)3 cathode material for lithium ion batteries was synthesized by a sol-gel method using V2O5, H2O2, NH4H2PO4, LiOH and citric acid as starting materials, and its physicochemical properties were investigated using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX), transmission electron microscope (TEM), and electrochemical methods. The sample prepared displays a monoclinic structure with a space group of P21/n, and its surface is covered with a rough and porous carbon layer. In the voltage range of 3.0-4.3 V, the Li3V2(PO4)3 electrode displays a large reversible capacity, good rate capability and excellent cyclic stability at both 25 and 55 °C. The largest reversible capacity of 130 mAh g−1 was obtained at 0.1C and 55 °C, nearly equivalent to the reversible cycling of two lithium ions per Li3V2(PO4)3 formula unit (133 mAh g−1). It was found that the increase in total carbon content can improve the discharge performance of the Li3V2(PO4)3 electrode. In the voltage range of 3.0-4.8 V, the extraction and reinsertion of the third lithium ion in the carbon coated Li3V2(PO4)3 host are almost reversible, exhibiting a reversible capacity of 177 mAh g−1 and good cyclic performance. The reasons for the excellent electrochemical performance of the carbon coated Li3V2(PO4)3 cathode material were also discussed.  相似文献   

7.
The electrochemical behaviour of uranium, iron and vanadium in 0,1 M–10 M phosphoric acid solutions, has been investigated by polarography, cyclic voltammetry and controlled-potential electrolyses. In concentrated phosphoric acid solutions (|H3 PO4| > 3 M), uranium (VI) can be reduced by iron (II). Kinetic measurements of the reduction in 5 M H3PO4 and 5 M H3PO4—1 M HF mixtures have been carried out.  相似文献   

8.
The kinetics of hydrogen ionisation and electrochemical evolution on a smooth rotating tungsten carbide electrode have been investigated. Polarisation curves in 1 N H2SO4, H3PO4 and HCl solutions, in the temperature range of 20?80°C, have been obtained. For hydrogen ionisation at ?r=0·3 V the apparent activation energies (Kcal/moles) were 8·1 in H2SO4, 7·4 in H3PO4 and 12·8 in HCl. At potentials of ?r>0·4V a decrease in the hydrogen ionisation rate was observed, explained as a decrease in the number of active surface sites due to surface oxidation and adsorption of anions. However, after a moderate anodic polarisation not leading to the formation of a thick tungsten carbide oxides layer, reiterated recording of the polarisation curve yields an increase in electrode activity.In all acids the first order of reaction with respect to molecular hydrogen was found. The hydrogen ionisation rate was independent of the pH-value of the solution. These results showed adsorption, accompanied by molecular hydrogen dissociation, to be the rate-determining step.Modifying the concentration of sulphuric acid in the presence of excess normal salt or without it, as well as passing from acidic to alkaline solutions caused no change in the course of the polarisation curves. This suggests that recombination of adsorbed hydrogen atoms into molecules on tungsten carbide is the rate determinating step, ie, the same step as in the reverse process of hydrogen ionisation.  相似文献   

9.
The potentiostatic deposition of polypyrrole (PPy) from 0.1 M aqueous phosphoric acid solution and the doping/dedoping behavior of the resulting films have been investigated by the electrochemical quartz crystal microbalance (EQCM) technique. The change of the complex shear modulus during the film growth and during the doping/dedoping were calculated using the acoustic impedance method. It was found that the films contain only ca. 1 wt% water in the oxidized state which is in accordance with their relatively high storage modulus of 38 MPa and low loss tangent of 0.05. Comparing H3PO4 (pH 1) and NaH2PO4 (pH 8) it was found that the doping/dedoping in the latter is accompanied by a strong increase of the surface roughness which is a direct result of cation exchange present at pH 8.  相似文献   

10.
A Spherical Void Electrodynanic Levitator Trap (SVELT) was used to measure the water activity in the supersaturated aqueous solutions of six materials, NaCl, (NH4)2SO4, KH2PO4, NH4H2PO4, KA1(SO4)2 · 12H2O and glycine. The relationship between chemical potential and concentration was obtained using a fifth order polynomial fit. A comparison of the order of the crystal growth rate obtained from the use of chemical potential difference and concentration difference was made. The order of crystal growth rate calculated from concentration difference was found to be close to that obtained from chemical potential difference at low supersaturation, while at higher supersaturation a deviation was noted.  相似文献   

11.
The electrochemical reduction of oxygen on thin-film platinum electrodes in 0.1 M HClO4 and 0.05 M H2SO4 solutions has been investigated using the rotating disk electrode (RDE) method. Thin films of Pt (0.25-20 nm thick) were prepared by vacuum evaporation onto glassy carbon substrate. The surface morphology of Pt films was examined by transmission electron microscopy (TEM). The specific activity of O2 reduction was higher in HClO4 and decreased with decreasing film thickness. In H2SO4, the specific activity was lower and appeared to be independent of the Pt loading. The values of Tafel slopes close to −120 mV dec−1 in high current density range and −60 mV dec−1 in low current density range were obtained for all electrodes in both solutions, indicating that the mechanism of O2 reduction is the same for thin-film electrodes as for bulk Pt. The number of electrons transferred per O2 molecule was close to four for all thin Pt films studied.  相似文献   

12.
Present studies deal with the application of supported liquid membrane (SLM) technique for the separation of uranium (VI) from phosphoric acid medium using a binary mixture of 2-ethyl hexyl phosphoric acid-mono-2-ethyl hexyl ester (PC88A) and neutral donor which is a mixture of four tri-alkyl phosphine oxide better known as Cyanex 923 in n-dodecane as a carrier and (NH4)2CO3 as a receiving phase. Various parameters like feed acidity, nature of strippant, carrier concentration, membrane pore size, membrane thickness etc. which affect the transport of U(VI) have been studied in detail. Experiments have also been carried out to see the transport behaviour of different fission products from a diluted High Level Waste (HLW) solution. Stability of the membrane against the leaching of the extractant and stability of the membrane support have also been investigated. We have tried to model the physicochemical transport of U(VI) in SLM as well as establishing the mechanism (Diffusion controlled) of transport. More than 95% uranium (VI) is recovered in 360 min using a binary mixture of 0.60 M PC88A and 0.15 M Cyanex 923 in n-dodecane as carrier and 0.5 M (NH4)2CO3 as stripping phase from the 0.5 M H3PO4 feed. Lower concentration of H3PO4 (0.5 M) and optimum carrier concentration (0.60 M PC88A + 0.15 M Cyanex 923) in the mole ratio of 4:1 is found to be the most suitable condition for maximum transport of uranium (VI). The optimum conditions obtained from this study was also applied to recover uranium from analytical waste in phosphoric acid medium generated in the laboratory.  相似文献   

13.
Hydrous manganese oxide was deposited on graphite substrates at anodic potentials of 0.5-0.95 V versus saturated calomel electrode (SCE) in 0.25 M Mn(CH3COO)2 solution at 25 °C. Morphology of manganese oxide prepared was examined by scanning electron microscopy (SEM). Manganese oxide deposited at various anodic potentials was evaluated by cyclic voltammetry with various potential scan rates in different electrolytes. Results indicated that the pseudocapacitive behaviors of manganese oxide were excellent both in 2 M KCl and 2 M (NH4)2SO4 solutions at room temperature. Manganese oxide deposited at 0.5 V versus SCE showed better capacitive behaviors, the specific capacitances were 275 F/g in 2 M KCl solution and 310 F/g in 2 M (NH4)2SO4 solution, respectively. Besides, better electrochemical reversibility could be obtained in 2 M KCl solution.  相似文献   

14.
It was recently shown that an abnormally fast transport of CO molecules takes place at the electrode/electrolyte interface of Pt and PtRu electrodes in H2SO4 and HClO4 solutions. In the present paper, this phenomenon is tested for other gases, such as hydrogen and oxygen. The fast transport is also observed at the solid/electrolyte solution interface of other electrode materials and at the glass/electrolyte interface. Several experiments are shown, demonstrating that mass transfer takes place at a velocity, which is more than one order of magnitude higher than expected for usual diffusion conditions.Assuming radial mass transfer at the interface of a Pt disc, the activation energy, Ea = 23 kJ mol−1, was calculated from Arrhenius plots. The same value was measured in H2SO4 and HClO4 as supporting electrolytes. The mass transport parameter, Y, at 298 K was 4.8 × 10−3 cm2 s−1 and 2.9 × 10−3 cm2 s−1 in 0.5 M H2SO4 and 1 M HClO4 respectively.  相似文献   

15.
Corrosion inhibition of mild steel in H3PO4 containing chloride or sulphate ions have been studied using different electrochemical techniques. The corrosion and hydrogen evolution of mild steel alloy in 2 M H3PO4 acid containing 0.5 M NaCl can be effectively inhibited by addition of natural product compound, Thymol (IPMP), of different concentrations. However, in 2 M H3PO4 containing 0.5 M Na2SO4 corrosion cannot be effectively inhibited. The results of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements confirm the synergistic effects which describe the increase in the effectiveness of a corrosion inhibitor in the presence of Cl ions in the corrosive medium. At any temperature, an increase in it leads to an increase of the corrosion rate and hydrogen evolution on mild steel. Polarization and EIS results are in good agreement with each other. The obtained results were confirmed by surface examination using scanning electron microscope.  相似文献   

16.
Low efficiency of mineral dissolution and unrecyclable use of additives are two barriers for the development of CO2 mineral carbonation. A new pH-swing CO2 mineralisation process using recyclable ammonium salts is proposed to overcome these barriers. This paper presents the studies of mineral dissolution with ammonium salts. In this study, dissolution of a serpentine sample was performed using a series of aqueous solutions, which include (NH4)2SO4, NH4Cl, NH4HSO4 and H2SO4. NH4HSO4 is the most efficient in terms of extracting Mg extraction from the serpentine sample. At 100 °C 1.4 M NH4HSO4 extracted 100% of Mg from serpentine in 3 h, as well as 98% of Fe and 17.6% of Si. The rate limiting mechanism of serpentine dissolution with NH4HSO4 is a chemical reaction with product layer diffusion control and the activation energy of this dissolution was 40.9 kJ mol−1.  相似文献   

17.
G.Q. Liu  Qilu  W. Li 《Electrochimica acta》2005,50(9):1965-1968
Spinel compound LiNi0.5Mn1.5O4 was synthesized by a chemical wet method. Mn(NO3)2, Ni(NO3)2·6H2O, NH4HCO3 and LiOH·H2O were used as the starting materials. At first, Mn(NO3)2 and Ni(NO3)2·6H2O reacted with NH4HCO3 to produce a precursor, then the precursor reacted with LiOH·H2O to synthesize product LiNi0.5Mn1.5O4. The product showed a single spinel phase under appropriate calcination conditions, and exhibited a high voltage plateau at about 4.6-4.8 V in the charge/discharge process. The LiNi0.5Mn1.5O4 had a discharge specific capacity of 118 mAh/g at about 4.6 V and 126 mAh/g in total in the first cycle at a discharge current density of 2 mA/cm2. After 50 cycles, the total discharge capacity was above 118 mAh/g.  相似文献   

18.
Anodic coatings formed on magnesium alloys by plasma anodization process are mainly used as protective coatings against corrosion. The effects of KOH concentration, anodization time and current density on properties of anodic layers formed on AZ91D magnesium alloy were investigated to obtain coatings with improved corrosion behaviour. The coatings were characterized by scanning electron microscopy (SEM), electron dispersion X-ray spectroscopy (EDX), X-ray diffraction (XRD) and micro-Raman spectroscopy. The film is porous and cracked, mainly composed of magnesium oxide (MgO), but contains all the elements present in the electrolyte and alloy. The corrosion behaviour of anodized Mg alloy was examined by using stationary and dynamic electrochemical techniques in corrosive water. The best corrosion resistance measured by electrochemical methods is obtained in the more concentrated electrolyte 3 M KOH + 0.5 M KF + 0.25 M Na3PO4·12 H2O, with a long anodization time and a low current density. A double electrochemical effects of the anodized layer on the magnesium corrosion is observed: a large inhibition of the cathodic process and a stabilization of a large passivation plateau.  相似文献   

19.
The influence of pH on the corrosion behavior of Mg-based AZ91D alloy was investigated in a constant composition phosphate medium using various electrochemical techniques, complemented with surface analysis data. The studied solutions were 0.1 M H3PO4, NaH2PO4, Na2HPO4 and Na3PO4 having pH values of 1.8, 4.5, 9.1 and 11.8, respectively. Spontaneous passivation was substantiated from monitoring the continuous positive shift of the open circuit corrosion potential with both immersion time and solution pH. The impedance data indicated more improvement in the insulating properties of the corrosion products formed on the alloy surface with increase in pH. The electrolyte pH plays a determinant influence on surface film properties, as films formed in phosphate solutions with higher pH values are thicker, thus affording better protection for the alloy than those formed in acidic solutions. Good agreement was observed between the results obtained from electrochemical techniques and those from EDX and XRD examinations. The alloy is more susceptible to corrosion in acidic phosphate solutions than in the alkaline ones. Crystalline magnesium (Mg), magnesium hydride (MgH2) and magnesium oxide (MgO) were found to be the main constituents of the surface film after holding for 2 h in the acidic phosphate medium.  相似文献   

20.
To use the protonic mesothermal fuel cell without humidification, mass transportation in diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]), trifluoromethanesulfuric acid (TfOH)-added [dema][TfO], and phosphoric acid (H3PO4)-added [dema][TfO] was investigated by electrochemical measurements. The diffusion coefficient and the solubility of oxygen were ca. 10−5 cm2 s−1 and ca. 10−3 M (=mol dm−3), respectively. Those of hydrogen were a factor of 10 and one-tenth compared to oxygen, respectively. The permeability, which is a product of the diffusion coefficient and solubility, of oxygen and hydrogen were almost the same for the perfluoroethylenesulfuric acid membrane and the sulfuric acid solution; therefore, these values are suitable for fuel cell applications. On the other hand, a diffusion limiting current was observed for the hydrogen evolution reaction. The current corresponded to ca. 10−10 mol cm−1 s−1 of the permeability, and the diffusion limiting species was the hydrogen carrier species. The TfOH addition enhanced the diffusion limiting current of [dema][TfO], and the H3PO4 addition eliminated the diffusion limit. The hydrogen bonds of H3PO4 or water-added H3PO4 might significantly enhance the transport of the hydrogen carrier species. Therefore, [dema][TfO] based materials are candidates for non-humidified mesothermal fuel cell electrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号