首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new type of oxygen stoichiometric and Mg-doped LiMn2O4 spinel with improved crystallinity and decreased surface area was synthesized by a special “two-step” method: first, calcinate the mixture of metal oxides at “ultra-high” temperatures (950-1100 °C) to obtain an intermediate product with improved crystallinity, larger particle size and oxygen defects; then, anneal the intermediate at relatively low temperatures (600-800 °C) with the addition of extra LiOH to achieve oxygen stoichiometry. These spinels with general formula Li1+xMgyMn2−xyO4+δ or (Li, Mg, Mn)3O4+δ are oxygen-rich based on chemical analysis (O/(Li+Mg+Mn) ratio larger than 4:3), and they can be called oxygen stoichiometric spinels with metal cation vacancies and rewritten as [Li]8a[LinMgmMn2−nmpp]16d[O4]32e. This new kind of materials with controlled oxygen stoichiometry exhibited greatly improved cycling performance and reduced Mn dissolution at elevated temperatures over that of other Mg-doped materials prepared by conventional “one-step” method.  相似文献   

2.
Li1+xAlyMn2−xyOδ spinel cathode materials for lithium-ion batteries have been prepared by two methods, a specific two-step and the conventional one-step solid-state calcination methods. Compared with the conventional method, the new two-step method can guarantee the oxygen stoichiometry in spinel samples as well as reduced surface area. These characters lead to the improvement in cycling performance of spinel cathode even at elevated temperature. Moreover, the increase in doping amount of Al into Mn-spinel contributes to smearing the oxygen deficiency at high calcination temperature (1000 °C). The oxygen stoichiometric spinel samples exhibited greatly improved cycling performance. Further, Mn dissolution from spinel cathodes into the electrolyte was sufficiently suppressed even at elevated temperature of 60 °C. This beneficial influence would be reflected more remarkably in the cycles of lithium-ion full cells (spinel/C).  相似文献   

3.
Sintering behavior and electromagnetic properties of Ni0.5Zn0.5Fe2−xO4−3/2x ferrite (x = 0, 0.4, 0.8) by the sol–gel method are investigated. Fe deficiency in the composition enhances sintering and retards grain growth. The near fully dense Fe-deficient samples could be obtained at a sintering temperature as low as 1120 °C and the highest relative density appears in the x = 0.8 sample sintered at 1150 °C. Second phase zincite ZnO resulting from Fe deficiency plays an important role in spinel NiZn ferrites by acting as a grain growth inhibitor and the grain growth of NiZn ferrite is effectively suppressed. When the sintering temperature is above 1200 °C, extensive grain growth occurs due to the probability of serious volatilization of zinc at high temperatures. The ratio of Ni to Zn of NiZn ferrites increases with increasing Fe deficiency due to the separation of zinc from spinel lattice, which results in the decrease in initial permeability and the increase in Curie temperature and resonant frequency.  相似文献   

4.
New pyrochlore ceramics have been produced by doping Sm and Nd into the Bi site and Fe into the Nb site in the Bi1.5Zn0.92Nb1.5O6.92 (BZN) pyrochlore. Doped pyrochlore ceramics were produced by conventional solid state mixing of oxides at different doping levels using the compositions of Bi1.5−xSmxZn0.92Nb1.5O6.92, Bi1.5−xNdxZn0.92Nb1.5O6.92 and Bi1.5Zn0.92Nb1.5−xFexO6.92−x. The solubility limit of cations was determined as x = 0.13, 0.18 and 0.15 for Sm, Nd and Fe, respectively. While Sm and Nd increased the dielectric constant (?), Fe doping led a decrease in ?. Dielectric constant of Sm and Nd doped BZN increased to 199 at x = 0.13 (Sm) and to 219 at x = 0.18 (Nd). At low Fe dopings (x = 0.05), the dielectric constant of BZN increased to 242 but decreased to 211 at x = 0.15. The dielectric losses were lower for Sm and Nd dopings than Fe but in all cases it was lower than 0.006. The dielectric constant of Sm, Nd and Fe doped BZN ceramics was nearly independent of frequency within the frequency range between 1 kHz and 2 MHz, but decreased considerably with temperature between 20 and 200 °C. Temperature coefficient of Sm doped BZN (−354 ppm/°C) was lower than Nd and Fe doped BZN ceramics at solubility limits (−538 ppm/°C for Nd and −565 ppm/°C for Fe).  相似文献   

5.
To improve the cathodic performance of olivine-type LiMnPO4, we investigated the optimal annealing conditions for a composite of carbon with cation doping. Nanocrystalline and the cation-doped LiMn1−xMxPO4 (M = Ti, Mg, Zr and x = 0, 0.01, 0.05 and 0.10) was synthesized in aqueous solution using a planetary ball mill. The synthesis was performed at the fairly low temperature of 350 °C to limit particle size. The obtained samples except for the Zr doped one consisted of uniform and nano-sized particles. The performance of LiMnPO4 was much improved by an annealing treatment between 500 and 550 °C with carbon in an inert atmosphere. A small amount of metal-rich phosphide (Mn2P) was detected in the sample annealed at 900 °C. In addition, 1 at.% Mg doping for Fe enhanced the rate capability in our doped samples. The discharge capacity of LiMn0.99Mg0.01PO4/C was 146 mAh/g at 0.1 mA/cm2 and 125 mAh/g even at 2.0 mA/cm2.  相似文献   

6.
Mg1−xNixAl2O4 (x = 0, 0.25, 0.5, 0.75 and 1) solid solutions have been prepared by combustion synthesis. After annealing the combustion synthesized powders at 1000 °C for 3 h single-phase Mg1−xNixAl2O4 was obtained over the entire range of compositions. The lattice parameter of Mg1−xNixAl2O4 gradually increased from 8.049 Å (NiAl2O4) to 8.085 Å (MgAl2O4), which certified the formation of the spinel solid solutions. All samples prepared by combustion synthesis had blue color shades, denoting the inclusion of Ni2+ in the spinel structure in octahedral and tetrahedral configuration. The crystallite size of Mg1−xNixAl2O4 was in the range of 35-39 nm and the specific surface area varied between 5.8 and 7.0 m2/g.  相似文献   

7.
High voltage spinel oxides with composition LiMn2 − xMxO4 (M, a transition metal element) have remarkable properties such as high potential, high energy density and high rate capability. We believe that these positive electrode materials could replace the widespread commercial layered nickel cobalt oxides in some applications. The present assessment highlights electrochemical performance of optimized LiNi0.5Mn1.5O4 and substituted counterparts, all having a spinel structure (cubic close-packed oxygen array) similar to the relative LiMn2O4. To fully emphasize the benefit from high potential spinel oxides, tests have been performed versus lithium metal, Li4Ti5O12 and graphite, using various electrode loadings (0.3-4.5 mAh cm−2) and cycling rates (from C/20 to 60C rate). Steady capacity retention (130-140 mAh g−1 for nearly 500 cycles) and flat voltage (4.7 V vs. Li+/Li) have been obtained at C/5 rate at room temperature. Effect of cycling at high temperature has been shown to be less critical than for LiMn2O4. High voltage spinel oxides still sustain 100 mAh g−1 and over after 400 cycles at 55 °C at 1C rate. Rate capability is also excellent, with only 4% loss of capacity when comparing C/8 and 8C rates (thin electrodes).  相似文献   

8.
(1 − x)ZnAl2O4xTiO2 (x = 0.21) ceramics were synthesized at 1500 °C for 3 h using the solid-state reaction at a heating rate from 1 to 7 °C/min. The effects of heating rate on the microstructure, phase composition and oxidation state of titanium in the ceramics were investigated. The XRD results show that this system is composed of two phases, i.e. ZnAl2O4 spinel and rutile. The “black core” phenomenon resulting from reduction of Ti4+ ion valence appears after the ceramics are sintered at the speed of 1 and 3 °C/min. As the heating rate increases, the density and quality factor (Q·f) increase initially and reach the maximum value when the heating rate is 5 °C/min, and then reduce quickly to the minimum, while the dielectric constant (?r) and temperature coefficient of resonator frequency (τf) nearly do not change. The optimal microwave dielectric properties can be achieved in (1 − x)ZnAl2O4xTiO2 (x = 0.21) ceramics sintered at a heating rate of 5 °C/min with an ?r value of 11.6, a Q·f value of 74,000 GHz (at about 6.5 GHz), and a τf value of −0.4 ppm/°C.  相似文献   

9.
The electrochemical properties of Sr1−xCexMnO3 (SCM, 0.1≤x≤0.4)–Gd0.2Ce0.8O2−x (GDC) composite cathodes were determined by impedance spectroscopy. The study focused on the doping effect of Ce in the composite cathodes. Single-phase perovskite was obtained for 0.1≤x≤0.3 in SCM. No reaction occurred between the Sr0.7Ce0.3MnO3 electrode and the GDC electrolyte at an operating temperature of 800 °C for 100 h. In the single phase perovskite region, lattice expansion occurred due to the reduction of Mn4+ to Mn3+ at B-sites, and this was attributed to an increase in Ce content. Ce doping enhanced the electrode performance of SCM–GDC composite cathodes, and best electrode performance was achieved for the Sr0.7Ce0.3MnO3–GDC composite cathode (0.93 Ω cm2 and 0.47 Ω cm2 at 750 °C and 800 °C, respectively). The improvement in electrode performance was attributed to increases in charge carriers induced by a shift of some Mn from +4 to +3 and to the formation of surface oxygen vacancies caused by Mn4+ to Mn3+ conversion at high temperatures.  相似文献   

10.
The formation mechanism and microstructural development of the spinel phases in the Co1 − xO/Co2TiO4 composites upon reactive sintering the Co1 − xO and TiO2 powders (9:1 molar ratio) at 1450 °C and during subsequent cooling in air were studied by X-ray diffraction and analytical electron microscopy. The Co2TiO4 spinel occurred as inter- and intragranular particles in the matrix of Ti-doped Co1 − xO grains with a rock salt-type structure during reactive sintering. The submicron sized Co2TiO4 particles were able to detach from grain boundaries in order to reach an energetically favorable parallel orientation with respect to the host Co1 − xO grains via a Brownian-type rotation/coalescence process. Upon cooling in air, secondary Co2TiO4 nanoparticles were precipitated and the Ti-doped Co1 − xO host was partially oxidized as Co3 − δO4 spinel by rapid diffusion along the {1 1 1} and {1 0 0}-decorated interphase interface and the free surface of the composites.  相似文献   

11.
The influence of iron doping level in Ba0.5Sr0.5Co1−yFeyO3−δ (y = 0.0-1.0) (BSCF) oxides on their phase structure, oxygen nonstoichiometry, electrical conductivity, performance as symmetrical cell electrode and oxygen permeating membranes was systematically investigated. A cubic perovskite structure was observed for all the compositions with the presence of iron. The increase of iron doping level resulted in the decrease of the lattice constant, room-temperature oxygen nonstoichiometry, total electrical conductivity, and the increase of area specific resistance (ASR) as cathode with samaria doped ceria electrolyte. However, promising cathode performance with an ASR as low as 0.613 Ω cm2 was still obtained at 600 °C for Ba0.5Sr0.5FeO3−δ (BSF). The ceramic membranes composing of BSCF with various iron doping level are all oxygen semi-permeable at elevated temperatures. The increase of iron doping level resulted in the decrease of oxygen permeation flux from JO2 = 2.28 μmol cm−2 s−1 (STP) for Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF5582) to ∼0.45 μmol cm−2 s−1 (STP) at 900 °C for BSF (y = 1.0) with the same membrane thickness of 1.1 mm, alongside with the change of the rate-determination step from the oxygen surface exchange to the slow oxygen bulk diffusion. The formation of composite oxide with a proper electronic conducting phase and the thin film technology are important for their prospective application as cathode in IT-SOFCs and oxygen permeating membrane, respectively.  相似文献   

12.
A vacuum-annealed La0.6Ca0.4CoO3−x was consecutively oxygenated in air at temperatures decreasing from 800 to 100 °C, and its electrocatalytic activities for oxygen reduction and evolution were then measured as a function of the oxygenation temperature. The valence of Co cation, changing between +2 and +3, was found susceptible to annealing either in vacuum or air. The catalytic activities initially decrease monotonically as the oxygenation temperature was decreased from 800 to 300 °C, as a result of increasing oxygen content, and then rise abruptly with the oxygen reduction activity reaching a maximum at 200 °C and the oxidation activity at 150 °C. X-ray photoelectron spectroscopy analysis indicated that the enhancements by the low-temperature oxygenation involved increased OH coverage and less charged cations at surface. The results clearly reveal the importance of the post-calcination annealing process for optimizing the performance of La0.6Ca0.4CoO3−x in air electrode applications.  相似文献   

13.
Spinel-type ternary ferrites with composition NiFe2−xCrxO4 (0 ≤ x ≤ 1) were synthesized by a precipitation method and their physicochemical and electrocatalytic properties have been investigated using IR, XRD, BET surface area, XPS, impedance and Tafel polarization techniques. The study indicated that substitution of Cr from 0.2 to 1.0 mol in the spinel matrix increased the apparent electrocatalytic activity of the base oxide towards the O2 evolution reaction in 1 M KOH at 25 °C. The apparent electrocatalytic activity of the oxide with 0.8-1.0 mol Cr was found to be the greatest among the present series of oxides investigated. It is noteworthy that the electrocatalytic activity of the oxide with x = 0.8-1.0 was also greater than those of other spinel/perovskite O2 evolving electrocatalysts reported in literature.  相似文献   

14.
J. Jiang 《Electrochimica acta》2005,50(24):4778-4783
Samples of the layered cathode materials, Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 (x = 1/12, 1/4, 5/12, and 1/2), were synthesized at 900 °C. Electrodes of these samples were charged in Li-ion coin cells to remove lithium. The charged electrode materials were rinsed to remove the electrolyte salt and then added, along with EC/DEC solvent or 1 M LiPF6 EC/DEC, to stainless steel accelerating rate calorimetry (ARC) sample holders that were then welded closed. The reactivity of the samples with electrolyte was probed at two states of charge. First, for samples charged to near 4.45 V and second, for samples charged to 4.8 V, corresponding to removal of all mobile lithium from the samples and also concomitant release of oxygen in a plateau near 4.5 V. Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples with x = 1/4, 5/12 and 1/2 charged to 4.45 V do not react appreciably till 190 °C in EC/DEC. Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples charged to 4.8 V versus Li, across the oxygen release plateau, start to significantly react with EC/DEC at about 130 °C. However, their high reactivity is similar to that of Li0.5CoO2 (4.2 V) with 1 μm particle size. Therefore, Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples showing specific capacity of up to 225 mAh/g may be acceptable for replacing LiCoO2 (145 mAh/g to 4.2 V) from a safety point of view, if their particle size is increased.  相似文献   

15.
This study reports the successful preparation of single-phase perovskite (Ba0.5Sr0.5)0.8La0.2Fe1−xMnxO3−δ (x = 0-0.2) by the citrate-EDTA complexing method. The crystal structure, thermal gravity analysis, coefficient of thermal expansion, electrical conductivity, and electrochemical performance of (Ba0.5Sr0.5)0.8La0.2Fe1−xMnxO3−δ were investigated to determine its suitability as a cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The lattice parameter a of (Ba0.5Sr0.5)0.8La0.2Fe1−xMnxO3−δ decreases as the amount of Mn doping increases. The coefficients of thermal expansion of the samples are in the range of 21.6-25.9 × 10−6 K−1 and show an abnormal expansion at around 400 °C associated with the loss of lattice oxygen. The electrical conductivity of the (Ba0.5Sr0.5)0.8La0.2Fe1−xMnxO3−δ samples decreases as the amount of Mn-doping increases. The electrical conductivity of the samples reaches a maximum value at around 400 °C and then decreases as the temperature increases. The charge transfer resistance, diffusion resistance and total resistance of a (Ba0.5Sr0.5)0.8La0.2Fe0.8Mn0.15O3-δ-Ce0.8Sm0.2O1.9 composite cathode electrode at 800 °C are 0.11 Ω cm2, 0.24 Ω cm2 and 0.35 Ω cm2, respectively.  相似文献   

16.
Haitao Gu 《Electrochimica acta》2009,54(13):3532-3537
Electrochemical properties of Co-doped Sr0.8Ce0.2MnO3−δ cathode were investigated at the cathode/Sm0.2Ce0.8O1.9 electrolyte interface. The electrochemical impedance spectroscopy was measured under applied cathodic voltages (E = −0.4 to 0 V). At E = 0 V, the area-specific resistance decreased from 2.20 Ω cm2 to 0.19 Ω cm2 at 700 °C with Co doping. Under the cathodic polarization, the rate determining step of oxygen reduction process was different for both cathodes: the charge transfer for Sr0.8Ce0.2MnO3−δ and the diffusion process for Sr0.8Ce0.2Mn0.8Co0.2O3−δ. Besides, the overpotential also decreased from 124 mV to 19 mV at the current density of 0.1 A cm−2 at 800 °C with Co doping. The improved electrochemical properties of Co-doped Sr0.8Ce0.2MnO3−δ can be ascribed to the formation of more oxygen vacancies and more active sites for oxygen reduction reaction.  相似文献   

17.
Synthesis, electrochemical, and structural properties of LiNi0.8Co0.15Al0.05O2 cathodes prepared by TiO2 nanoparticles coating on a Ni0.8Co0.15Al0.05(OH)2 precursor have been investigated by the variation of coating concentration and annealing temperature. TiO2-coated cathodes showed that Ti elements were distributed throughout the particles. Among the coated cathodes, the 0.6 wt% TiO2-coated cathode prepared by annealing at 750 °C for 20 h exhibited the highest reversible capacity of 176 mAh g−1 and capacity retention of 92% after 40 cycles at a rate of 1C (=190 mA g−1). On the other hand, an uncoated cathode showed a reversible first discharge capacity of 186 mAh g−1 and the same capacity retention value to the TiO2-coated sample at a 1C rate. However, under a 1C rate cycling at 60 °C for 30 cycles, the uncoated sample showed a reversible capacity of 40 mAh g−1, while a TiO2-coated one showed 71 mAh g−1. This significant improvement of the coated sample was due to the formation of a possible solid solution between TiO2 and LiNi0.8Co0.15Al0.05O2. This effect was more evident upon annealing the charged sample while increasing the annealing temperature, and at 400 °C, the coated one showed a more suppressed formation of the NiO phase from the spinel LiNi2O4 phase than the uncoated sample.  相似文献   

18.
Electrodeposition of Ni1−xFex (x = 0.1-0.9) films was carried out from a chloride plating solution containing saccharin as an organic additive at a constant current density (5 mA/cm2) and a controlled pH of 2.5. X-ray diffraction studies revealed the existence of an fcc, or γ phase, in the range of 10-58 wt.% Fe, a mixed fcc/bcc phase in the range of 59-60 wt.% Fe, and a bcc, or α phase in the range of 64-90 wt.% Fe. The saturation magnetization, Bs, of electrodeposited Ni1−xFex alloys at the room temperature was found to increase with the increase of Fe-content and follows the Slater-Pauling curve, but deviates from as-cast bulk NiFe alloys. The coefficient of thermal expansion, CTE, of electrodeposited alloys at room temperature also deviates from as-cast bulk NiFe alloys. Annealing of α-Ni36Fe64 alloy results in a martensitic α → γ phase transformation, which takes place between 300 and 400 °C. It was demonstrated that thermal treatment above 400 °C was necessary to obtain magnetic and mechanical properties similar to those to conventional Invar alloy. Annealing of α-Ni36Fe64 alloy at 700 °C brings about a decrease of Bs from 1.75 to 0.45 T. By controlling the annealing conditions of α → γ martensitic transformation, it is possible to adjust the CTE of Ni36Fe64 alloy over the broad limits from 2.7 to 8.7 × 10−6/°C.  相似文献   

19.
A new series of rare earth solid solutions Sc2−xYxW3O12 was successfully synthesized by the conventional solid-state method. Effects of doping ion yttrium on the crystal structure, morphology and thermal expansion property of as-prepared Sc2−xYxW3O12 ceramics were investigated by X-ray diffraction (XRD), thermogravimetric analysis (TG), field emission scanning electron microscope (FE-SEM) and thermal mechanical analyzer (TMA). Results indicate that the obtained Sc2−xYxW3O12 samples with Y doping of 0≤x≤0.5 are in the form of orthorhombic Sc2W3O12-structure and show negative thermal expansion (NTE) from room temperature to 600 °C; while as-synthesized materials with Y doping of 1.5≤x≤2 take hygroscopic Y2W3O12·nH2O-structure at room temperature and exhibit NTE only after losing water molecules. It is suggested that the obvious difference in crystal structure leads to different thermal expansion behaviors in Sc2−xYxW3O12. Thus it is proposed that thermal expansion properties of Sc2−xYxW3O12 can be adjusted by the employment of Y dopant; the obtained Sc1.5Y0.5W3O12 ceramic shows almost zero thermal expansion and its average linear thermal expansion coefficient is −0.00683×10−6 °C−1 in the 25–250 °C range.  相似文献   

20.
This study investigates the structure, phase stability, and electrical properties of BaCe0.8Y0.2−xNdxO3−δ (x = 0-0.2) in humid air. XRD results indicate that a BaCe0.8Y0.2−xNdxO3−δ sample has an asymmetric orthorhombic structure, and this structure becomes more symmetric as the amount of Nd doping increases. The conductivity of BaCe0.8Y0.2−xNdxO3−δ depends on the amount of Nd doping and the operation temperature. AC impedance results indicate that the resistance of BaCe0.8Y0.2−xNdxO3−δ decreases as the temperature increases, with the majority of resistance coming from oxygen ion diffusion. The XRD peak intensity of BaCe0.8Y0.2O3−δ apparently decreased with time, forming Ba(OH)2 and CeO2 second phases. The phase stability of BaCe0.8Y0.2−xNdxO3−δ (x = 0.05-0.2) samples is much better than that of BaCe0.8Y0.2O3−δ, and it exhibited no second phase after tested in an 80 °C water bath for 18 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号