共查询到8条相似文献,搜索用时 7 毫秒
1.
An in situ surface study of the iron chalcogenide glass membrane ion-selective electrode (ISE) in aqueous media has been undertaken using a tandem technique of mixed potential/synchrotron radiation grazing incidence X-ray diffraction (SR-GIXRD) and atomic force microscopy (AFM). This work has simultaneously monitored the mixed potential and in situ surface diffraction patterns of this crystalline glassy material, showing that the observed gradual shift of the electrode potential in the anodic direction is linked to the preferential dissolution of the GeSe (1 1 1), GeSe (1 0 1) and GeSe (1 4 1) and/or Sb2Se3 (0 1 3), Sb2Se3 (2 2 1) and Sb2Se3 (0 2 0) surfaces. Expectedly, these observations are internally consistent with preferential oxidative attack of the crystalline regions of the membrane comprising GeSe and/or Sb2Se3, as evidenced by AFM imaging of the electrode surface. Clearly, this work corroborates the results of previous ex situ surface studies on the iron chalcogenide glass ISE, whereby it was shown that alkaline saline solutions have a tendency to alter the surface chemistry and concomitant response characteristics of the ISE. 相似文献
2.
A combination of electrochemical impedance spectroscopy (EIS) and in situ synchrotron radiation grazing incidence X-ray diffraction (SR-GIXRD) has been used to study the influence of acetate on the carbon dioxide corrosion of mild steel. The SR-GIXRD data demonstrated that normal corrosion - in a carbon dioxide saturated brine - induced the formation of a thick corrosion scale of Fe2(OH)2CO3 and Fe2O2CO3, and this totally obscured the α-Fe diffraction peaks of the underlying steel substrate after 24 h. On the other hand, the carbon dioxide corrosion of mild steel in the presence of acetate also detected the Bragg diffraction peaks for Fe2(OH)2CO3 and Fe2O2CO3; however, the α-Fe diffraction peaks of the underlying steel substrate were not extinguished with time, and there was a reversal in the pattern of evolution of the intensities of the Fe2(OH)2CO3 and Fe2O2CO3 phases in acetate. Accordingly, the EIS data showed a poorly defined medium frequency time constant for the corroded steel specimen in brine spiked with acetate, and this medium frequency time constant was extinguished as a function of time. Alternatively, EIS of the corroded specimen also revealed a medium frequency time constant after 24 h. In addition, EIS complex-plane impedance plots showed that the corroded electrode had become passivated in an acetate-spiked brine, as evidenced by a three-fold enhancement in the charge transfer resistance at low frequency. These EIS/SR-GIXRD outcomes suggest that acetate affects the crystallization chemistry of the Fe2(OH)2CO3/Fe2O2CO3 corrosion scale, and this causes a mild passivation of the corroded steel surface. 相似文献
3.
Jean-Pierre Veder Ayman Nafady Graeme Clarke Ross P. Williams Roland De Marco Alan M. Bond 《Electrochimica acta》2011,(3):1546
An easy to fabricate and versatile cell that can be used with a variety of electrochemical techniques, also meeting the stringent requirement for undertaking cyclic voltammetry under transient conditions in in situ electrocrystallization studies and total external reflection X-ray analysis, has been developed. Application is demonstrated through an in situ synchrotron radiation-grazing incidence X-ray diffraction (SR-GIXRD) characterization of electrocrystallized cadmium (II)-tetracyanoquinodimethane material, Cd(TCNQ)2, from acetonitrile (0.1 mol dm−3 [NBu4][PF6]). Importantly, this versatile cell design makes SR-GIXRD suitable for almost any combination of total external reflection X-ray analysis (e.g., GIXRF and GIXRD) and electrochemical perturbation, also allowing its application in acidic, basic, aqueous, non-aqueous, low and high flow pressure conditions. Nevertheless, the cell design separates the functions of transient voltammetry and SR-GIXRD measurements, viz., voltammetry is performed at high flow rates with a substantially distended window to minimize the IR (Ohmic) drop of the electrolyte, while SR-GIXRD is undertaken using stop-flow conditions with a very thin layer of electrolyte to minimize X-ray absorption and scattering by the solution. 相似文献
4.
5.
Maria Luisa Foresti Andrea Pozzi Giovanni Pezzatini Emanuele Salvietti Fabio D’Anca Francesco Borgatti 《Electrochimica acta》2006,51(25):5532-5539
An innovative setup to combine electrochemical and in situ surface X-ray diffraction (SXRD) measurements is described. This electrochemical cell has a different design from the other ones commonly used for X-ray diffraction studies. It allows the sample surface to stay always completely immersed into the solution under controlled potential conditions even during the SXRD measurements. The X-ray beam crosses the liquid (about 1 cm) and the cell walls. Because of the high X-ray energy, the beam attenuation is negligible and by an appropriate positioning of the detector arm slits it is possible to minimize the diffuse scattering induced by the liquid and cell walls in order to still detect the minima of the crystal truncation rods (CTRs). The liquid solution in the cell is managed by a special device, which allows the controlled exchange of the electrolyte solutions necessary in the electrochemical atomic layer epitaxy (ECALE) growth. The whole setup can be remotely controlled from outside the experimental hutch by a dedicated computer. As an example we report measurements on S layers deposited at underpotential on the Ag(1 1 1) surface, and on CdS films of increasing thickness. 相似文献
6.
Kenta Kitsuka Kazuhiro Kaneda Mineo Ikematsu Masahiro Iseki Katsuhiko Mushiake Takeo Ohsaka 《Electrochimica acta》2009,55(1):31-36
An electrode composed of silicon/titanium oxide/platinum/titanium dioxide (Si/TiOX/Pt/TiO2) was fabricated by spin-coating TiO2 multilayers on a Si/TiOX/Pt substrate and was used in electrochemical ozone production (EOP). EOP was realized when the Si/TiOX/Pt substrate was completely covered with the TiO2 film and a current efficiency of 7% was achieved at a low current density of 26.7 mA cm−2 in 0.01 M HClO4 at 15 °C. The TiO2 film was found to be of an anatase-type TiO2 and that to comprise aperture structures from the X-ray diffraction (XRD) and transmission electron microscopy (TEM) observations. Moreover, the fabricated TiO2 film was found to be an n-type semiconductor by photoelectrochemical measurements. The high efficiency at a low current density of EOP on the TiO2 n-type semiconductor was explained to result from the electron transfer through the TiO2/HClO4 interface as tunneling current. When the tunneling current passes through a depletion layer of TiO2, the electrode potential is necessarily high enough to facilitate EOP. 相似文献
7.
Molybdenum oxide based conversion coatings have been formed on the surface of the depleted uranium-0.75 wt.% titanium alloy. Electrochemical impedance spectroscopy (EIS) measurements have been performed on the as-made and aged coatings and compared with the untreated depleted uranium (DU) alloy. The Nyquist and Bode plots of the as-made coating were similar to the untreated samples and contained capacitive and inductive loops. The aged coating exhibits significantly different behavior from the as-made coating and has been modeled with a four element equivalent circuit that contains a constant phase element (CPE). 相似文献
8.
Torben R. Jensen Axel Nrlund Christensen Jonathan C. Hanson 《Cement and Concrete Research》2005,35(12):2300-2309
The hydrothermal transformation of calcium aluminate hydrates were investigated by in situ synchrotron X-ray powder diffraction in the temperature range 25 to 170 °C. This technique allowed the study of the detailed reaction mechanism and identification of intermediate phases. The material CaAl2O4·10H2O converted to Ca3Al2(OH)12 and amorphous aluminum hydroxide. Ca2Al2O5·8H2O transformed via the intermediate phase Ca4Al2O7·13H2O to Ca3Al2(OH)12 and gibbsite, Al(OH)3. The phase Ca4Al2O7·19H2O reacted via the same intermediate phase to Ca3Al2(OH)12 and mainly amorphous aluminum hydroxide. The powder pattern of the intermediate phase is reported. 相似文献