首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
P. Kannan 《Electrochimica acta》2010,55(10):3497-265
This paper describes the highly sensitive electrochemical determination of nitric oxide (NO) using the fused spherical gold nanoparticles (FAuNPs) modified ITO electrode. The FAuNPs were self-assembled on a (3-mercaptopropyl)-trimethoxysilane (MPTS) sol-gel film, which was preassembled on ITO electrode. The attachment of FAuNPs on MPTS sol-gel film was confirmed by UV-vis absorption spectroscopy, atomic force microscopy (AFM) and cyclic voltammetry (CV). The AFM image shows that the AuNPs retain their fused morphology after immobilized on MPTS sol-gel film. The FAuNPs modified ITO electrode shows an excellent electrocatalytic activity towards the oxidation of NO. Using FAuNPs modified electrode, the detection of 12 nM NO was achieved for the first time by amperometry method. Further, the current response was increased linearly with increasing NO concentration in the range of 1.2 × 10−8 to 7 × 10−4 M and the detection limit was found to be 3.1 × 10−10 M (S/N = 3). The FAuNPs modified ITO electrode displays an excellent selectivity towards the determination of 12 nM NO even in the presence of 1000-fold excess common interfering agents.  相似文献   

2.
Burcu Unal 《Polymer》2006,47(24):8173-8182
Linear α,ω di-epoxide-terminated poly(ethylene glycol) of molar mass 4000 g mol−1 was end-linked with amine-terminated poly(amidoamine) (PAMAM) dendrimers of generations 0, 2, and 4 in water to prepare architecturally well-defined copolymer hydrogels. The gelation and equilibrium swelling of the gels in water were characterized while systematically varying the polymer concentration at preparation, dendrimer generation, and mole ratio of dendrimer endgroups to PEG endgroups. The Ahmad-Rolfes-Stepto (ARS) theory of non-linear polymerization was applied to predict conditions favoring gelation, and to estimate the extent of reaction of amine and epoxide groups. Hydrogels having a large stoichiometric excess of amines over epoxides exhibited “superabsorbent” behavior upon extraction and equilibrium swelling in pure water. The mole ratio of amines to epoxides (equivalently, the mass fraction of dendrimers) was the most important factor governing superabsorbent behavior, although the polymer volume fraction at crosslinking and dendrimer generation also affected swelling to a lesser extent. The superabsorbency arises in part from protonation of the dendrimer amine endgroups at external pH = 7, which is supported by the drastic shrinkage of the most highly swelling gels in aqueous NH4OH at pH = 11. Equilibrium swelling at pH = 7 was noticeably enhanced in gels having a high soluble fraction and high mass fraction of dendrimers. End-linking of linear polymer precursors to PAMAM dendrimers can potentially produce novel copolymer gels that combine attractive properties of the linear precursors with high swelling and pH-responsive behavior of PAMAM-containing networks.  相似文献   

3.
A novel amperometric sensor was fabricated based on the immobilization of hemin onto the poly (amidoamine)/multi-walled carbon nanotube (PAMAM/MWCNT) nanocomposite film modified glassy carbon electrode (GCE). Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and ultraviolet visible (UV-vis) adsorption spectroscopy were used to investigate the possible state and electrochemical activity of the immobilized hemin. In the Hemin/PAMAM/MWCNT nanocomposite film, MWCNT layer possessed excellent inherent conductivity to enhance the electron transfer rate, while the layer of PAMAM greatly enlarged the surface average concentration of hemin (Γ) on the modified electrode. Therefore, the nanocomposite film showed enhanced electrocatalytical activity towards the oxidation of l-tyrosine. The kinetic parameters of the modified electrode were investigated. In pH 7.0 phosphate buffer solution (PBS), the sensor exhibits a wide linear range from 0.1 μM to 28.8 μM l-tyrosine with a detection limit of 0.01 μM and a high sensitivity of 0.31 μA μM−1 cm−2. In addition, the response time of the l-tyrosine sensor is less than 5 s. The excellent performance of the sensor is largely attributed to the electro-generated high reactive oxoiron (IV) porphyrin (O = FeIV-P) which effectively catalyzed the oxidation of l-tyrosine. A mechanism was herein proposed for the catalytic oxidation of l-tyrosine by oxoiron (IV) porphyrin complexes.  相似文献   

4.
Methanol oxidation on gold nanoparticles has been studied using cyclic voltammetry in alkaline media. The onset for methanol oxidation in 0.1 M NaOH solutions is at ca. 0.3 V (RHE) and the currents reach a maximum value at 0.8 V. In 1 M NaOH solutions, oxidation currents are measured at potentials as low as 0.1 V. Although the currents are significantly smaller than the expected limiting diffusion current for methanol oxidation, oxidation currents are partially controlled by diffusion, as revealed by rotating disk experiments. This suggests that only a small fraction of the nanoparticles is active for the oxidation. It is proposed that formate is the final product of the oxidation and formaldehyde is an active intermediate in the process.  相似文献   

5.
A novel electroanalytical method for the detection of paraquat using DNA modified gold nanoparticles immobilized at a gold electrode is demonstrated. The electrode surface was first modified using the self-assembly of gold nanoparticles (NPs) followed by the simple adsorption of DNA onto the NPs, which was straightforward, fast and cost effective. The DNA-nanoparticle composite sensor was then characterized in terms of electrochemical responses both in the absence and in the presence of paraquat using cyclic voltammetry, differential pulse voltammetry and square wave voltammetry. The DNA-NPs composite electrode proved to work adequately as a biosensor for the quantitative analysis of paraquat concentrations, taking advantage of utilizing both the modified gold nanoparticles and the interaction between DNA with paraquat molecules. In addition, the NPs modified electrode demonstrated good sensitivity and stability towards the first reversible reduction step of the double charged paraquat ion. Good linearity between paraquat concentration and peak current was observed for the concentration range of 5.0 × 10−6 to 1.0 × 10−3 M when using differential pulse voltammetry. The use of modified electrodes improves the performance of the biosensor in the presence of interfering species in particular when square wave voltammetry is used.  相似文献   

6.
This work describes the electrocatalytic properties of a carbon composite electrode (CCE) modified with Prussian blue (PB) nanoparticles (NPs) for the electrocatalytic oxidation of pyridoxine (PN). The morphology of the PBNP-modified CCE was characterized by scanning electron microscopy (SEM). The mechanism and kinetics of the catalytic oxidation reaction of PN were monitored by cyclic voltammetry and chronoamperometry. The rate-limiting step of the charge transfer reaction was found to be a one-electron abstraction. The value of α, k, and D were calculated as 0.66, 6.7 × 104 M−1 s−1, and 1.88 × 10−5 cm2 s−1, respectively. The modified electrode showed electrocatalytic activity toward the oxidation of PN and was used as an amperometric sensor. The sensor exhibited good linear response for PN over the concentration ranges 5-69 and 1-80 μM with detection limits of 0.51 and 0.87 μM, and sensitivities of 0.97 and 0.673 A M−1 cm−2 in batch and flow conditions, respectively. Some important advantages such as simple preparation, fast response, good stability, and reproducibility of the sensor for the amperometric determination of PN were achieved.  相似文献   

7.
A novel ITO electrode surface modified with spherical and rod-shaped gold nanoparticles was prepared by a surfactant-assisted seeding growth approach, which provided a biocompatible matrix for the immobilization of hemoglobin (Hb). By electrochemical impedance measurements, gold nanoparticles modification and Hb immobilization on the electrode surfaces were characterized using [Fe(CN)6]3−/[Fe(CN)6]4− redox probe. Owing to the promoted electron transfer of Hb by gold nanoparticles, the Hb immobilized gold nanoparticles-modified ITO (Hb/Au/ITO) electrode exhibited an effective catalytic response to the reduction of H2O2 with good reproducibility and stability. The linear relationship existed between the catalytic current and the H2O2 concentration in the range of 1 × 10−5 to 7 × 10−3 M. The detection limit (S/N = 3) was 4.5 × 10−6 M.  相似文献   

8.
In this study, Pt and Pt-Ru nanoparticles were synthesized on graphene sheets and their electrocatalytic activity for methanol and ethanol oxidation was investigated. Experimental results demonstrate that, in comparison to the widely-used Vulcan XC-72R carbon black catalyst supports, graphene-supported Pt and Pt-Ru nanoparticles demonstrate enhanced efficiency for both methanol and ethanol electro-oxidations with regard to diffusion efficiency, oxidation potential, forward oxidation peak current density, and the ratio of the forward peak current density to the reverse peak current density. For instance, the forward peak current density of methanol oxidation for graphene- and carbon black-supported Pt nanoparticles is 19.1 and 9.76 mA/cm2, respectively; and the ratios are 6.52 and 1.39, respectively; the forward peak current density of ethanol oxidation for graphene- and carbon black-supported Pt nanoparticles is 16.2 and 13.8 mA/cm2, respectively; and the ratios are 3.66 and 0.90, respectively. These findings favor the use of graphene sheets as catalyst supports for both direct methanol and ethanol fuel cells.  相似文献   

9.
A glassy carbon electrode modified with CeO2 nanoparticles was constructed and was characterized by electrochemical impedance spectrum (EIS) and cyclic voltammetry (CV). The resulting CeO2 nanoparticles modified glassy carbon electrode (CeO2 NP/GC electrode) was used to detect uric acid (UA) and ascorbic acid (AA) simultaneously in mixture. This modified electrode exhibits potent and persistent electron-mediating behavior followed by well-separated oxidation peaks towards UA and AA with activation overpotential. For UA and AA in mixture, one can well separate from the other with a potential difference of 273 mV, which was large enough to allow the determination of one in presence of the other. The DPV peak currents obtained in mixture increased linearly on the UA and AA in the range of 5.0 × 10−6 to 1.0 × 10−3 mol/L and 1.0 × 10−6 to 5.0 × 10−4 mol/L, with the detection limit (signal-to-noise ratio was 3) for UA and AA were 2.0 × 10−7 and 5.0 × 10−6 mol/L, respectively. The proposed method showed excellent selectivity and stability, and the determination of UA and AA simultaneously in serum was satisfactory.  相似文献   

10.
The electrocatalytic activity for the oxygen reduction reaction (ORR) of different shape-controlled gold nanoparticles (NPs) and nanorods has been studied by scanning electrochemical microscopy (SECM). TEM images and lead underpotential deposition (UPD) voltammetric profiles were used to physically and electrochemically characterize all gold particles studied here, providing information on the shape and surface structure of the different NPs and nanorods. The SECM results demonstrate that cubic gold NPs are the most active towards ORR in 0.1 M NaOH, followed by the spherical gold NPs and, finally, by the short gold nanorods. These results are in agreement with previous studies using conventional electrochemical techniques with gold NPs and single crystal electrodes, since they established that higher ratio of (1 0 0) domains provide higher catalytic activity for ORR.  相似文献   

11.
Monodisperse indium tin oxide nanoparticles (ITO NPs) with high crystallinity have been synthesized by the rapid thermal injection method and the seed-mediated growth method. We demonstrate that the surface plasmon resonance (SPR) frequencies of ITO NPs can be manipulated from 1,600 to 1,993 nm in near-infrared band by controlling the composition, size, and morphology. The doping Sn concentration in ITO NPs could be controlled via changing the %Sn in the initial feed from 0% to 30%. The shortest SPR wavelength at 1,600 nm with 10% Sn doping concentration indicates highest free electron carrier concentration in ITO NPs, which has direct relationship with doping Sn4+ ions. Furthermore, we demonstrate that the SPR peaks can also be tuned by the size of ITO NPs in the case of uniform doping. Besides, compared with the ITO NPs, single crystalline ITO with nanoflower morphology synthesized through the one-pot method exhibit SPR absorption peak features of red-shifting and broadening.  相似文献   

12.
Electrochemical oxidation of guanine mediated by [Ru(bpy)2dpp]2+ (where bpy = 2,2′-bipyridine, dpp = 2,3-bis (2-pyridyl) pyrazine) and their electrochemical assembly at an ITO electrode prompted by guanine have been investigated with cyclic voltammetry and differential pulse voltammetry. It is found that [Ru(bpy)2dpp]2+ can serve as an excellent mediator to induce the oxidation of guanine, and the mediated peak currents increase linearly with the rise of guanine concentration in the range from 0.01 to 0.20 mmol L−1. Interestingly, with the increase of repetitive voltammetric sweeping numbers, [Ru(bpy)2dpp]3+/2+ can be assembled onto the ITO electrode and guanine has the ability to enhance the peak currents of prewaves. Also, with the rise of guanine concentration from 0.01 to 0.15 mmol L−1, the peak currents of prewaves increase gradually. Meanwhile, the mediated mechanism of guanine oxidation by [Ru(bpy)2dpp]2+ and the assembled process of [Ru(bpy)2dpp]3+/2+ on the ITO surface in the presence of guanine are discussed in detail.  相似文献   

13.
Indium tin oxide (ITO) thin films were prepared by a sol-gel spin coating method, fired, and then annealed in the temperature range of 450-600°. The XRD patterns of the thin films indicated the main peak of the (2 2 2) plane and showed a higher degree of crystallinity with an increase in the annealing temperature. Upon annealing the films at 500 and 600°, two binding energy levels of Sn4+ ion of 486.9 eV and 486.6 eV, respectively, were measured in the XPS spectra. The ITO film that was annealed at 600° contained two oxidation states of Sn, Sn2+ and Sn4+, and it had a higher sheet resistance based on a rather low doping concentration of Sn4+. The film that was annealed at 500° and subsequently treated with 0.1 N HCl solution for 40 s showed a sheet resistance of 225 Ω/square. The surface treatment by the acidic solution diminished the RMS (root mean square) roughness value and the residual carbon content (XPS peak intensity of carbon) of the ITO films. It seems that the acid-cleaning of the ITO thin films led to a decrease of the surface roughness and sheet resistance.  相似文献   

14.
The formation of neodymium (III) hexacyanoferrate (II) (NdHCF) nanoparticles (NPs) on the surface of carbon-paste electrode induced by enzymatic reaction was described and characterized. The conditions for biosensing of glucose were optimized through various experiments. Results showed that the optimized condition of the glucose oxidase (GOx)-induced NdHCF NPs for the biosensing of glucose were 2.0 mM Nd3+, 40.0 mM Fe(CN)63− and 20 μg/mL GOx. The biocatalyzed generation of NdHCF NPs in the presence of O2/glucose and GOx enabled the development of an electrochemical biosensor for glucose. Furthermore, this system avoids the interferences from other species for the biosensing of glucose.  相似文献   

15.
Tetraoctylammonium bromide stabilized gold nanoparticles (TOAB-AuNPs) attached to 1,6-hexanedithiol (HDT) modified Au electrode was used for the simultaneous determination of paracetamol (PA) and ascorbic acid (AA) at physiological pH. The attachment of TOAB-AuNPs on HDT modified Au surface was confirmed by attenuated total reflectance (ATR)-FT-IR spectroscopy and atomic force microscope (AFM). The ATR-FT-IR spectrum of TOAB-AuNPs attached to the HDT monolayer showed a characteristic stretching modes corresponding to -CH2 and -CH3 of TOAB, confirming the immobilization of AuNPs with surface-protecting TOAB ions on the surface of the AuNPs after being attached to HDT modified Au electrode. AFM image showed that the immobilized AuNPs were spherical in shape and densely packed to a film of ca. 7 nm thickness. Interestingly, TOAB-AuNPs modified electrode shifted the oxidation potential of PA towards less positive potential by 70 mV and enhanced its oxidation current twice when compared to bare Au electrode. In addition, the AuNPs modified electrode separated the oxidation potentials of AA and PA by 210 mV, whereas bare Au electrode failed to resolve them. The amperometry current of PA was increased linearly from 1.50 × 10−7 to 1.34 × 10−5 M with a correlation coefficient of 0.9981 and the lowest detection limit was found to be 2.6 nM (S/N = 3). The present method was successfully used to determine the concentration of PA in human blood plasma and commercial drugs.  相似文献   

16.
A new gold nanoparticles-modified electrode (GNP/LC/GCE) was fabricated by self-assembling gold nanoparticles to the surface of the l-cysteine-modified glassy carbon electrode. The modified electrode showed an excellent character for electrocatalytic oxidization of uric acid (UA) and ascorbic acid (AA) with a 0.306 V separation of both peaks, while the bare GC electrode only gave an overlapped and broad oxidation peak. The anodic currents of UA and AA on the modified electrode were 6- and 2.5-fold to that of the bare GCE, respectively. Using differential pulse voltammetry (DPV), a highly selective and simultaneous determination of UA and AA has been explored at the modified electrode. DPV peak currents of UA and AA increased linearly with their concentration at the range of 6.0 × 10−7 to 8.5 × 10−4 mol L−1 and 8.0 × 10−6 to 5.5 × 10−3 mol L−1, respectively. The proposed method was applied for the detection of UA and AA in human urine with satisfactory result.  相似文献   

17.
Laccase from Cerrena unicolor was adsorbed on hydrophilic carbon nanoparticles (diameter = ca. 7.8 nm) modified with phenyl sulfonate groups and immobilized on an ITO electrode surface in a sol-gel processed silicate film. As shown by scanning electron and atomic force microscopies, the nanoparticles are evenly distributed on the electrode surface forming small aggregates of tens of nanometers in size. The mediator-free electrode exhibits significant and pH-dependent electrocatalytic activity towards dioxygen reduction. The maximum catalytic current density (95 μA cm−2) is obtained at pH 4.8 corresponding to maximum activity of the enzyme. Under these conditions dioxygen electroreduction commences at 0.575 V vs. Ag|AgClsat, a value close to the formal potential of the T1 redox centre of the laccase. The scanning electrochemical microscopy images obtained in redox competition mode exploiting mediatorless electrocatalysis show that the laccase is evenly distributed in the composite film. The obtained electrode was applied as biocathode in a zinc-dioxygen battery operating in 0.1 M McIlvaine buffer (pH 4.8). It provides 1.48 V at open circuit and a maximum power density 17.4 μW cm−2 at 0.7 V.  相似文献   

18.
Yinsong Wang  Ling Rong Liu 《Polymer》2007,48(14):4135-4142
The interaction between bovine serum albumin (BSA) and self-aggregated nanoparticles of cholesterol-modified O-carboxymethyl chitosan (CCMC) with different degrees of substitution (DS) of cholesterol moiety was studied by transmission electron microscopy (TEM), fluorescence quenching method and circular dichroism (CD) measurement. This interaction was started at the disaggregation of CCMC self-aggregated nanoparticles and reached equilibrium after 3-4 h. The apparent quenching constant (Kq) between BSA and CCMC self-aggregated nanoparticles calculated by the modified Stern-Volmer plot increased from 4.14 × 104 to 1.95 × 105 M−1 with DS of cholesterol moiety increasing from 3.2% to 9.8%, whereas the fraction of tryptophan residues in BSA molecule involved in the interaction decreased at the same time. Compared with free BSA, the relative α-helix content of BSA decreased and the unfolding of BSA by a denaturant such as urea was largely suppressed upon interaction with CCMC self-aggregated nanoparticles. DS of cholesterol moiety significantly affected the interaction between BSA and CCMC self-aggregated nanoparticles.  相似文献   

19.
A cuprous oxide (Cu2O) nanoparticles modified Pt rotating ring-disk electrode (RRDE) was successfully fabricated, and the electrocatalytic determination of p-nitrophenol (PNP) using this electrode was developed. Cu2O nanoparticles were obtained by reducing the copper-citrate complex with hydrazine hydrate (N2H4·H2O) in a template-free process. The hydrodynamic differential pulse voltammetry (HDPV) technique was applied for in situ monitor the photoelectrochemical behavior of PNP under visible light using nano-Cu2O modified Pt RRDE as working electrode. PNP undergoes photoelectrocatalytic degradation on nano-Cu2O modified disk to give electroactive p-hydroxylamino phenol species which is compulsive transported and can only be detected at ring electrode at around 0.05 V with oxidation signal. The effects of illumination time, applied bias potential, rotation rates and pH of the reaction medium have been discussed. Under optimized conditions for electrocatalytic determination, the anodic current is linear with PNP concentration in the range of 1.0 × 10−5 to 1.0 × 10−3 M, with a detection limit of 1.0 × 10−7 M and good precision (RSD = 2.8%, n = 10). The detection limit could be improved to 1.0 × 10−8 M by given illumination time. The proposed nano-Cu2O modified RRDE can be potentially applied for electrochemical detection of p-nitrophenol. And it also indicated that modified RRDE technique is a promising way for photoelecrocatalytic degradation and mechanism analysis of organic pollutants.  相似文献   

20.
The electrocatalytic oxidation of hydrazine has been studied on glassy carbon modified by electrodeposition of quinizarine, using cyclic voltammetry and chronoamperometry techniques. It has been shown that the oxidation of hydrazine to nitrogen occurs at a potential where oxidation is not observed at the bare glassy carbon electrode. The apparent charge transfer rate constant and transfer coefficient for electron transfer between the electrode surface and immobilized quinizarine were calculated as 4.44 s−1 and 0.66, respectively. The heterogenous rate constant for oxidation of hydrazine at the quinizarine modified electrode surface was also determined and found to be about 4.83 × 103 M−1 s−1. The diffusion coefficient of hydrazine was also estimated as 1.1 × 10−6 cm2 s−1 for the experimental conditions, using chronoamperometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号