首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sulfonated polyimide (SPI) membranes have been evaluated as electrolyte membranes in direct methanol fuel cells (DMFCs). The membrane-electrode assembly (MEA) was made by hot-pressing the membrane, an anode and a cathode, catalyzed with PtRu/CB (PtRu dispersed on carbon black) and Pt/CB bound with Nafion® ionomer, respectively. The performance of the cell based on SPI was compared with that of Nafion® 112 in various operation conditions such as cell temperature (Tcell), cathode relative humidity (RH), and methanol concentration (CMeOH). The methanol crossover at the cell based on SPI was a half of Nafion® 112, resulting in the improved cell efficiency. Advantage of the use of SPI became much distinctive from the conventional Nafion® 112 when the DMFC was operated at a higher Tcell or a higher CMeOH.  相似文献   

2.
Homogeneous membranes based on sulfonated poly(ether ether ketone) (sPEEK) with different sulfonation degrees (SD) were prepared and characterized. In order to perform a critical analysis of the SD effect on the polymer barrier and mass transport properties towards direct methanol fuel cell species, proton conductivity, water/methanol pervaporation and nitrogen/oxygen/carbon dioxide pressure rise method experiments are proposed. This procedure allows the evaluation of the individual permeability coefficients in hydrated sPEEK membranes with different sulfonation degrees. Nafion® 112 was used as reference material. DMFC tests were also performed at 50 °C. It was observed that the proton conductivity and the permeability towards water, methanol, oxygen and carbon dioxide increase with the sPEEK sulfonation degree. In contrast, the SD seems to not affect the nitrogen permeability coefficient. In terms of selectivity, it was observed that the carbon dioxide/oxygen selectivity increases with the sPEEK SD. In contrast, the nitrogen/oxygen selectivity decreases. In terms of barrier properties for preventing the DMFC reactants loss, the polymer electrolyte membrane based on the sulfonated poly(ether ether ketone) with SD lower or equal to 71%, although having slightly lower proton conductivity, presented much better characteristics for fuel cell applications compared with the well known Nafion® 112. In terms of the DMFC tests of the studied membranes at low temperature, the sPEEK membrane with SD = 71% showed to have similar performance, or even better, as that of Nafion® 112. However, the highest DMFC overall efficiency was achieved using sPEEK membrane with SD = 52%.  相似文献   

3.
The effects of mesocarbon microbeads support for platinum–ruthenium (Pt–Ru) catalysts on anode performance of the direct methanol fuel cell (DMFC) were investigated. Polarization characteristics of the anode electrode were low due to the fast rate of mass transport in the electrode. The effects of the Nafion® content in the catalyst, the MEA hot press condition, the cell operation temperature and methanol concentration on the polarization curves of the anode were also investigated.  相似文献   

4.
Operation of a proton exchange membrane (PEM) fuel cell without external humidification (or 0% relative humidity, abbreviated as 0% RH) of the reactant gases is highly desirable, because it can eliminate the gas humidification system and thus decrease the complexity of the PEM fuel cell system and increase the system volume power density (W/l) and weight power density (W/kg). In this investigation, a PEM fuel cell was operated in the temperature range of 23-120 °C, in particular in a high temperature PEM fuel cell operation range of 80-120 °C, with dry reactant gases, and the cell performance was examined according to varying operation parameters. An ac impedance method was used to compare the performance at 0% RH with that at 100% RH; the results suggested that the limited proton transfer process to the Pt catalysts, mainly in the inonomer within the membrane electrode assembly (MEA) could be responsible for the performance drop. It was demonstrated that operating a fuel cell using a commercially available membrane (Nafion® 112) is feasible under certain conditions without external humidification. However, the cell performance at 0% RH decreased with increasing operation temperature and reactant gas flow rate and decreasing operation pressure.  相似文献   

5.
Nafion® ionomer content of the cathode catalyst-layer of a polymer electrolyte fuel cell (PEFC), made by the “decal” hot pressing method, has been investigated for its effect on performance and structure of the membrane electrode assembly (MEA). Varying Nafion® content was shown to have an effect on performance within the entire range of polarization curves (i.e. kinetic, ohmic, and mass-transport regions) as well as on the structure. AFM analysis shows the effect of Nafion on the dispersion of carbon aggregates. Further analysis using TEM demonstrates the effect of Nafion on both the dispersion of carbon aggregates and the distribution and thickness of the Nafion ionomer films surrounding the catalyst/carbon aggregates. The MEA structure change correlates well with the MEA performance on both kinetics and mass-transport region. The determining factors on the performance of MEA are the interfacial zone (between the ionomer and catalyst particle), the dispersion of catalyst/carbon aggregates and the distribution/thickness of Nafion films. An optimized Nafion® content in the range of 27 ± 6 wt.% for the cathode was determined for an E-TEK 20% Pt3Cr/C catalyst at a loading of 0.20 mg Pt/cm2.  相似文献   

6.
The membrane electrode assembly (MEA) studied was constituted with a gas diffusion electrode (E-TEK) impregnated with Nafion® solution which was assembled with a Nafion® 117 cation exchange membrane under heat and pressure. The MEA was used as anode in a membrane electrolysis (ME) cell with the objective to regenerate HCl and NaOH from NaCl. Current efficiency for hydrogen oxidation was determined and its value is 100%, which indicates that the only reaction occurring at the anode is the oxidation of hydrogen. Current-potential curves, recorded in different conditions, showed a linear variation in the range 0-3000 A m−2 when hydrochloric acid concentration is below 2 mol dm−3. In this case, the overvoltage was shown to be mainly due to the ohmic drop in the membrane and in the layer where Nafion® impregnation was performed. MEA overvoltage necessary to reach 3000 A m−2 current density was about 0.12 V. For high HCl concentration (6-8 mol dm−3), the MEA overvoltage increased sharply with current density due to the adsorption of chloride anions on platinum catalyst.  相似文献   

7.
To study the effects of fabrication methods on the durability of polymer electrolyte membrane fuel cells (PEMFCs), membrane-electrode assemblies (MEAs) were fabricated using a conventional method, a catalyst-coated membrane (CCM) method, and a CCM-hot pressed method. Single cells assembled with the prepared MEAs were operated galvanostatically at 600 mA cm−2 for 1000 h for the conventional MEA and the CCM MEA and for 500 h for the CCM-hot pressed MEA. During operation, i-V curves, impedance spectra, and cyclic voltammograms were measured roughly every 100 h. Before and after long-term operation, the physical and chemical characteristics of the MEAs were analyzed using mercury porosimetry, X-ray diffraction (XRD), scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and Fourier transformation infrared spectroscopy (FTIR). Under the operating conditions, the CCM MEA exhibited the lowest degradation rate as well as the highest initial performance.  相似文献   

8.
A sulfonated poly(aryl ether ether ketone ketone) (PEEKK) having a well-defined rigid homopolymer-like chemical structure was synthesized from a readily prepared PEEKK by post-sulfonation with concentrated sulfuric acid at room temperature within several hours. The polymer electrolyte membrane (PEM) cast from the resulting polymer exhibited an excellent combination of thermal resistance, oxidative and dimensional stability, low methanol fuel permeability and high proton conductivity. Furthermore, membrane electrode assemblies (MEAs) were successfully fabricated and good direct methanol fuel cell (DMFC) performance was observed. At 2 M MeOH feed, the current density at 0.5 V reached 165 mA/cm, which outperformed our reported similarly structured analogues and MEAs derived from comparative Nafion® membranes.  相似文献   

9.
In this work, a novel self-humidifying membrane electrode assembly (MEA) with Pt/SiO2/C as anode catalyst was developed to improve the performance of proton exchange membrane fuel cell (PEMFC) operating at low humidity conditions. The characteristics of the composite catalysts were investigated by XRD, TEM and water uptake measurement. The optimal performance of the MEA was obtained with the 10 wt.% of silica in the composite catalyst by single cell tests under both high and low humidity conditions. The low humidity performance of the novel self-humidifying MEA was evaluated in a H2/air PEMFC at ambient pressure under different relative humidity (RH) and cell temperature conditions. The results show that the MEA performance was hardly changed even if the RHs of both the anode and cathode decreased from 100% to 28%. However, the low humidity performance of the MEA was quite susceptible to the cell temperature, which decreased steeply as the cell temperature increased. At a cell temperature of 50 °C, the MEA shows good stability for low humidity operating: the current density remained at 0.65 A cm−2 at a usual work voltage of 0.6 V without any degradation after 120 h operation under 28% RH for both the anode and cathode.  相似文献   

10.
Nafion®-MO2 (M = Zr, Si, Ti) nanocomposite membranes were synthesized with the goal of increasing the proton conductivity and water retention at higher temperatures and lower relative humidities (120 °C, 40% RHs) as well as to improve the thermo-mechanical properties. The sol-gel approach was utilized to incorporate inorganic oxide nanoparticles within the pores of Nafion® membrane. The membranes synthesized by this approach were completely transparent and homogeneous as compared to membranes prepared by alternate casting methods which are cloudy due to the larger particle size. At 90 °C and 120 °C, all Nafion®-MO2 sol-gel composites exhibited higher water sorption than Nafion® membrane. However, at 90 °C and 120 °C, the conductivity was enhanced in only Nafion®-ZrO2 sol-gel composite with a 10% enhancement at 40% RH over Nafion®. This can be attributed to the increase in acidity of zirconia based sol-gel membranes shown by a decrease in equivalent weight in comparison to other nanocomposites based on Ti and Si. In addition, the TGA and DMA analyses showed improvement in degradation and glass transition temperature for nanocomposite membranes over Nafion®.  相似文献   

11.
In the existing microbial fuel cells (MFCs), the use of platinized electrodes and Nafion® as proton exchange membrane (PEM) leads to high costs leading to a burden for wastewater treatment. In the present study, two different novel electrode materials are reported which can replace conventional platinized electrodes and can be used as very efficient oxygen reducing cathodes. Further, a novel membrane which can be used as an ion permeable membrane (Zirfon®) can replace Nafion® as the membrane of choice in MFCs. The above mentioned gas porous electrodes were first tested in an electrochemical half cell configuration for their ability to reduce oxygen and later in a full MFC set up. It was observed that these non-platinized air electrodes perform very well in the presence of acetate under MFC conditions (pH 7, room temperature) for oxygen reduction. Current densities of −0.43 mA cm−2 for a non-platinized graphite electrode and −0.6 mA cm−2 for a non-platinized activated charcoal electrode at −200 mV vs. Ag/AgCl of applied potential were obtained. The proposed ion permeable membrane, Zirfon® was tested for its oxygen mass transfer coefficient, K0 which was compared with Nafion®. The K0 for Zirfon® was calculated as 1.9 × 10−3 cm s−1.  相似文献   

12.
A conventional membrane electrode assembly (MEA) for a direct methanol fuel cell (DMFC) consists of a polymer electrolyte membrane (PEM) compressed between an anode and cathode electrode. Limitations with this conventional design include: cost, fuel crossover, membrane degradation or contamination, ohmic losses and reduced active triple phase boundary (TPB) sites for catalyst located away from the electrode/membrane interface. In this work, ex situ and in situ characterization of a novel electrode assembly based on a membraneless architecture and advanced 3D anodes was investigated. The approach was shown to be fuel independent and scaleable to a conventional bi-polar fuel cell arrangement. The membraneless configuration exhibits comparable performance to a conventional ambient (25 °C, 1 atm) air-breathing DMFC. However, it has the additional advantages of a simplified design, the elimination of the membrane (a significant component expense) and enhanced fuel and catalyst utilization through the extension of the active catalyst zone.  相似文献   

13.
The carbon monoxide (CO) poisoning effect on carbon supported catalysts (Pt-Ru/C and Pt/C) in polymer electrolyte membrane (PEM) fuel cells has been investigated at higher temperatures (T > 100 °C) under different relative humidity (RH) conditions. To reduce the IR losses in higher temperature/lower relative humidity, Nafion®-Teflon®-Zr(HPO4)2 composite membranes were applied as the cell electrolytes. Fuel cell polarization investigation as well as CO stripping voltammetry measurements was carried out at three cell temperatures (80, 105 and 120 °C), with various inlet anode relative humidity (35%, 58% and 100%). CO concentrations in hydrogen varied from 10 ppm to 2%. The fuel cell performance loss due to CO poisoning was significantly alleviated at higher temperature/lower RH due to the lower CO adsorption coverage on the catalytic sites, in spite that the anode catalyst utilization was lower at such conditions due to higher ionic resistance in the electrode. Increasing the anode inlet relative humidity at the higher temperature also alleviated the fuel cell performance losses, which could be attributed to the combination effects of suppressing CO adsorption, increasing anode catalyst utilization and favoring OHads group generation for easier CO oxidation.  相似文献   

14.
A stability test of a direct methanol fuel cell (DMFC) was carried out by keeping at a constant current density of 150 mA cm−2 for 435 h. After the stability test, maximum power density decreased from 68 mW cm−2 of the fresh membrane-electrode-assembly (MEA) to 34 mW cm−2 (50%). Quantitative analysis on the performance decay was carried out by electrochemical impedance spectroscopy (EIS). EIS measurement of the anode electrode showed that the increase in the anode reaction resistance was 0.003 Ω cm2. From the EIS measurement results of the single cell, it was found that the increase in the total reaction resistance and IR resistance were 0.02 and 0.05 Ω cm2, respectively. Summarizing the EIS measurement results, contribution of each component on the performance degradation was determined as follows: IR resistance (71%) > cathode reaction resistance (24%) > anode reaction resistance (5%). Transmission electron microscopy (TEM) results showed that the average particle size of the Pt catalysts increased by 30% after the stability test, while that of the PtRu catalysts increased by 10%.  相似文献   

15.
A five-cell 150 W air-feed direct methanol fuel cell (DMFC) stack was demonstrated. The DMFC cells employed Nafion 117® as a solid polymer electrolyte membrane and high surface area carbon supported Pt-Ru and Pt catalysts for methanol electrooxidation and oxygen reduction, respectively. Stainless steel-based stack housing and bipolar plates were utilized. Electrodes with a 225 cm2 geometrical area were manufactured by a doctor-blade technique. An average power density of about 140 mW cm–2 was obtained at 110 °C in the presence of 1 M methanol and 3 atm air feed. A small area graphite single cell (5 cm2) based on the same membrane electrode assembly (MEA) gave a power density of 180 mW cm–2 under similar operating conditions. This difference is ascribed to the larger internal resistance of the stack and to non-homogeneous reactant distribution. A small loss of performance was observed at high current densities after one month of discontinuous stack operation.  相似文献   

16.
Silicon-containing sulfonated polystyrene/acrylate-poly(vinyl alcohol) (Si-sPS/A-PVA) and Si-sPS/A-PVA-phosphotungstic acid (Si-sPS/A-PVA-PWA) composite membranes were fabricated by solution blending and physical and chemical crosslinking methods to improve the properties of silicon-containing sulfonated polystyrene/acrylate (Si-sPS/A) membranes. FTIR spectra clearly show the existence of various interactions and a crosslinked silica network in composite membranes. The potential of the composites to act as proton exchange membranes in direct methanol fuel cells (DMFCs) was assessed by studying their thermal and hydrolytic stability, swelling, methanol diffusion coefficient, proton conductivity and selectivity. TGA measurements show that the composite membranes possess good thermal stability up to 190 °C, satisfying the requirement for fuel cell operation. Compared to the unmodified membrane, the composites exhibit less swelling and a superior methanol barrier. Most importantly, all of the composite membranes have significantly lower methanol diffusion coefficients and significantly higher selectivity than those of Nafion® 117. The Si-sPS/A-20PVA-20PWA membrane is the best applicant for use in DMFCs because it exhibits an optimized selectivity value (5.93 × 105 Ss cm−3) that is approximately 7.8 times of that of the unmodified membrane and is 27.8 times higher than that of Nafion® 117.  相似文献   

17.
A series of cation exchange membranes was produced by impregnating and coating both sides of a quartz web with a Nafion® solution (1100 EW, 10%wt in water). Inert filler particles (SiO2, ZrO2 or TiO2; 5-20%wt) were incorporated into the aqueous Nafion® solution to produce robust, composite membranes. Ion-exchange capacity/equivalent weight, water take-up, thickness change on hydration and ionic and electrical conductivity were measured in 1 mol dm−3 sulfuric acid at 298 K. The TiO2 filler significantly impacted on these properties, producing higher water take-up and increased conductivity. Such membranes may be beneficial for proton exchange membrane (PEM) fuel cell operation at low humidification. The PEM fuel cell performance of the composite membranes containing SiO2 fillers was examined in a Ballard Mark 5E unit cell. While the use of composite membranes offers a cost reduction, the unit cell performance was reduced, in practice, due to drying of the ionomer at the cathode.  相似文献   

18.
The degradation behavior of a membrane-electrode assembly (MEA) was investigated in accelerated degradation tests under constant voltage (0.8 V and 0.7 V) and load cycling (from open circuit voltage to 0.35 V) conditions. Changes in the structural and electrochemical characteristics of MEA after the durability tests give information as to the degradation mechanism of MEAs. The results of cyclic voltammogram and postmortem analysis by X-ray diffraction and high resolution-transmission electron microscopy indicate that the cathode catalyst layers of the MEAs showed no extreme degradation under constant voltage mode, whereas MEAs under repetition of load cycling mode showed very severe degradation after 280 h. However, the single cell performance of the MEA under repetition of load cycling mode was higher than under constant voltage mode. In addition, although the Pt band in the membrane of the MEA under repetition of load cycling mode was observed by field emission scanning electron microscopy, it did not affect the ohmic resistance.  相似文献   

19.
A silicon-based micro direct methanol fuel cell (μDMFC) for portable applications has been developed and its electrochemical characterization carried out in this study. Anode and cathode flowfields with channel and rib width of 750 μm and channel depth of 400 μm were fabricated on Si wafers using the microelectromechanical system (MEMS) technology. A membrane-electrode assembly (MEA) was specially fabricated to mitigate methanol crossover. This MEA features a modified anode backing structure in which a compact microporous layer is added to create an additional barrier to methanol transport thereby reducing the rate of methanol crossing over the polymer membrane. The cell with the active area of 1.625 cm2 was assembled by sandwiching the MEA between two micro-fabricated Si wafers. Extensive cell polarization testing demonstrated a maximum power density of 50 mW/cm2 using 2 M methanol feed at 60 °C. When the cell was operated at room temperature, the maximum power density was shown to be about 16 mW/cm2 with both 2 and 4 M methanol feed. It was further found that the present μDMFC still produced reasonable performance under 8 M methanol solution at room temperature.  相似文献   

20.
Direct ethanol fuel cell (DEFC) is a promising power source for future use in portable electronic equipments. In general, the power density obtained in DEFC is lower than that of direct methanol fuel cell. In the present study, various losses in DEFC are estimated by performing experiments with the prepared membrane electrode (MEA) to obtain current–voltage characteristics and comparing it with the prediction of mathematical model. MEA for the DEFC is prepared using Pt–Ru (40:20 by wt.%)/C as anode catalyst, Pt–black as cathode catalyst with 1 mg/cm2 of loadings and cast Nafion® (SE5112, DuPont) ionomer as proton exchange membrane. The mathematical model for DEFC is developed considering different overpotentials. The activation overpotential term is formulated considering ethanol electrooxidation mechanism proposed in literature and Butler–Volmer equation. The ohmic overpotential is modeled based on proton conductivity of Nafion® membrane and ohmic losses at the electrodes, current collectors and electrode–current collector interfaces. The concentration overpotential is formulated using Fick's law, modified Butler–Volmer equation and transport process through electrodes and electrocatalyst layers. The experiment data on current–voltage characteristics is predicted by the model with reasonable agreement and the influence of ethanol concentration and temperature on the performance of DEFC is captured by the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号