首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper reports on the fabrication and characterization of hemoglobin (Hb)-colloidal silver nanoparticles (CSNs)-chitosan film on the glassy carbon electrode and its application on electrochemical biosensing. CSNs could greatly enhance the electron transfer reactivity of Hb as a bridge. In the phosphate buffer solution with pH value of 7.0, Hb showed a pair of well-defined redox peaks with the formal potential (E0′) of −0.325 V (vs. SCE). The immobilized Hb in the film maintained its biological activity, showing a surface-controlled process with the heterogeneous electron transfer rate constant (ks) of 1.83 s−1 and displayed the same features of a peroxidase in the electrocatalytic reduction of oxygen and hydrogen peroxide (H2O2). The linear range for the determination of H2O2 was from 0.75 μM to 0.216 mM with a detection limit of 0.5 μM (S/N = 3). Such a simple assemble method could offer a promising platform for further study on the direct electrochemistry of other redox proteins and the development of the third-generation electrochemical biosensors.  相似文献   

2.
The electroreduction kinetics of silver sulfite complexes was investigated by rotation disk electrode (RDE) voltammetry, chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS). The stability constants of the silver sulfite complexes, 2 = 7.9 and 3 = 8.53 were determined. For the series of isopotential solutions investigated, a reaction order of 0.67 was obtained, the diffusion coefficient of the silver complexes varies in the range of 3.36 × 10−6 to 5.54 × 10−6 cm2 s−1 and the silver degree of complexation (2.31-2.67) were found. The analysis of the RDE, CP data and EIS spectra indicate the existence of a slow stage of the silver electrocrystallization in the region of the equilibrium potential and at stronger polarization of the electrode at initial time moments.  相似文献   

3.
Impedance spectroscopy and radiometric method have been used in the study of thiourea (TU) adsorption on monocrystalline silver electrodes of basal indices: (1 1 1), (1 0 0) and (1 1 0) in neutral solution. The dependence of the surface concentration of TU on the electrode potential and on the bulk concentration was determined for each studied surface. From radiometric measurements it follows that adsorption of TU on silver electrodes takes place in the entire range of applied potentials. The process of adsorption is practically reversible with respect to the electrode potential (in the range of the double layer) and the bulk concentration of TU. Differential capacity of silver electrodes in 0.01 M NaClO4 solution containing TU of concentrations from 10−6 to 5 × 10−4 M has been measured. The isotherms of TU adsorption, determined from the capacitance and radiometric measurements have been compared and the Gibbs energy of adsorption was calculated. The values of limiting surface concentration of adsorbed TU as well as the Gibbs energy of adsorption depend on the plane of Ag electrode and follow the sequence: Ag(1 1 1) > Ag(1 0 0) > Ag(1 1 0) which is in agreement with the surface density of Ag atoms.  相似文献   

4.
Hydrolytic lignin (HL) was adsorbed from an aqueous/organic solution on bare and iodine-modified gold electrode. Subsequent electrooxidation of the lignin adsorbate generated redox-active quinone-based groups in the biopolymer structure, exhibiting high reversibility during potential cycling and fast electron transfer kinetics. The presence of the chemisorbed iodine layer on the supporting gold electrode had a pronounced effect on the electrochemical properties of the final modified electrode in terms of double-layer capacitance (Cdl) and the observed surface coverage (Γobs). The high electrochemical activity in connection with low Cdl made it possible to apply the Au|I(ads)|HL electrode as a fast-responding and sensitive electrochemical sensor for NADH. When tested in the amperometric mode at a constant potential of +0.4 V vs. Ag/AgCl, the modified electrode showed a linear current-concentration response over the range of 5-120 μM with a sensitivity of 2.39 nA μM−1 cm−2 and a detection limit of 1.0 μM (S/N = 3). Kinetic studies using the rotating disk electrode revealed that the mediated oxidation of NADH on the Au|I(ads)|HL electrode was limited by the second order reaction of the analyte molecules with o-quinone moieties with a rate constant of ca. 4.7 × 102 M−1 s−1 (CNADH → 0). The modified electrode showed high resistivity against fouling and retained ca. 65% activity after storage in phosphate buffer (pH 7.4) at room temperature for 1 week.  相似文献   

5.
Electrochemical deposition of Ag and potential-induced structural change of the deposited Ag layer on a reconstructed surface of Au(1 1 1) electrode were followed by in situ scanning tunneling microscope (STM). A uniform Ag monolayer was formed on a reconstructed Au(1 1 1) surface in a 50-mM H2SO4 solution at +0.3 V (vs. Ag/AgCl) after adding a solution containing Ag2SO4 so that the concentration of Ag+ in the STM cell became ca. 2 μM. No characteristic height corrugation such as the Au reconstruction was observed on the surface, indicating that the lifting of the substrate Au reconstruction occurred by Ag deposition. The formed Ag monolayer was converted to a net-like shaped Ag nano-pattern of biatomic height when the potential was stepped from +0.3 to −0.2 V in the solution containing 2 μM Ag+. This result indicates that the substrate Au(1 1 1)-(1 × 1) surface was converted to the reconstructed surface even in the presence of Ag adlayer. Quite different structure was observed for Pd deposition on a reconstructed surface of Au(1 1 1) electrode at +0.3 V and the origin for this difference between Ag and Pd deposition is discussed.  相似文献   

6.
A colloidal silver nanoparticles (CSNs) chemically modified electrode was prepared and its application to the electroanalysis of Cytochrome c (Cyt. c) was studied. The CSNs were prepared by reduction of AgNO3 with NaBH4, and were stabilized by oleate. They could be efficiently immobilized on the surface of a silver electrode. The result showed that the CSNs could clearly enhance the electron transfer process between Cyt. c and the electrode compared with bulk silver electrode. Linear sweep voltammetric measurement of Cyt. c at the chemical modified electrode indicated that the oxidative peak current of Cyt. c was linear to its concentration ranging from 8.0 nmol L−1 to 3.0 μmol L−1 with the calculated detection limit was about 2.6 nmol L−1. The direct electrochemistry of Cyt. c was also studied by cyclic voltammetry.  相似文献   

7.
Laccase from Cerrena unicolor was adsorbed on hydrophilic carbon nanoparticles (diameter = ca. 7.8 nm) modified with phenyl sulfonate groups and immobilized on an ITO electrode surface in a sol-gel processed silicate film. As shown by scanning electron and atomic force microscopies, the nanoparticles are evenly distributed on the electrode surface forming small aggregates of tens of nanometers in size. The mediator-free electrode exhibits significant and pH-dependent electrocatalytic activity towards dioxygen reduction. The maximum catalytic current density (95 μA cm−2) is obtained at pH 4.8 corresponding to maximum activity of the enzyme. Under these conditions dioxygen electroreduction commences at 0.575 V vs. Ag|AgClsat, a value close to the formal potential of the T1 redox centre of the laccase. The scanning electrochemical microscopy images obtained in redox competition mode exploiting mediatorless electrocatalysis show that the laccase is evenly distributed in the composite film. The obtained electrode was applied as biocathode in a zinc-dioxygen battery operating in 0.1 M McIlvaine buffer (pH 4.8). It provides 1.48 V at open circuit and a maximum power density 17.4 μW cm−2 at 0.7 V.  相似文献   

8.
Gold nanoparticles were successfully deposited on FTO/WO3/BiVO4 electrode surface by means of electrolysis of AuCl4 ions. The composite films were characterized by SEM, XPS and XRD techniques. An increase in photocurrent and a negative shift of onset potential for water oxidation were observed upon modification of the electrode surface with the Au particles. The electrochemical impedance spectroscopy was used to confirm the acceleration of charge transfer process by Au deposition at the electrode surface. The photocurrent action spectrum did not correlate with the plasmonic absorbance of Au nanoparticles at 560 nm, suggesting that the Au nanoparticles increased charge separation without undergoing a plasmon resonance effect under visible light irradiation.  相似文献   

9.
Lu Yuan  Ruqin Yu 《Electrochimica acta》2008,53(10):3559-3565
Platinum nanoparticles (PtNPs) were prepared by seed-mediated growth method with Au nanoparticles (AuNPs) playing the role of seeds. Carbon nanotubes (CNTs) and AuNPs were first dropped onto the surface of glassy carbon (GC) electrode, and then the electrode was immersed into growth solution which contains H2PtCl6 and ascorbic acid. PtNPs were successfully grown onto the CNT surface due to the chemical reduction of Pt(IV). The electrode modified with AuNPseed/PtNP/CNT film displayed excellent electrochemical response to H2O2 at 0.45 V versus saturated calomel electrode (SCE) with sensitivity much larger than that of PtNP/CNT and AuNPseed/PtNP modified electrodes. Glucose oxidase was selected as a model enzyme and electrodeposited onto the AuNPseed/PtNP/CNT modified electrode in the presence of a detergent. The resulting biosensor enabled selective determination of glucose with high sensitivity of 4.49 μA mM−1, quick response time about 2 s, low-detection limit of 0.5 μM and wide linear range from 1 μM to 4 mM with a correlation coefficient 0.9998. Thus, the modified electrode proved to be a nice electrochemical biosensing platform for the fabrication of oxidase-based biosensors.  相似文献   

10.
Stainless steel was studied as anode for the biocatalysis of acetate oxidation by biofilms of Geobacter sulfurreducens. Electrodes were individually polarized at different potential in the range −0.20 V to +0.20 V vs. Ag/AgCl either in the same reactor or in different reactors containing acetate as electron donor and no electron acceptor except the working electrode. At +0.20 V vs. Ag/AgCl, the current increased after a 2-day lag period up to maximum current densities around 0.7 A m−2 and 2.4 A m−2 with 5 mM and 10 mM acetate, respectively. No current was obtained during chronoamperometry (CA) at potential values lower than 0.00 V vs. Ag/AgCl, while the cyclic voltammetries (CV) that were performed periodically always detected a fast electron transfer, with the oxidation starting around −0.25 V vs. Ag/AgCl. Epifluorescent microscopy showed that the current recorded by chronoamperometry was linked to the biofilm growth on the electrode surface, while CVs were more likely linked to the cells initially adsorbed from the inoculum. A model was proposed to explain the electrochemical behaviour of the biofilm, which appeared to be controlled by the pioneering adherent cells playing the role of “electrochemical gate” between the biofilm and the electrode surface.  相似文献   

11.
The present research demonstrates the microfabrication of a novel thin-film silver microelectrode based on an ion-selective PVC organic membrane. First, the gold substrate thin-film surface is treated by depositing a thin-layer of Ag electrochemically. This pretreatment step is followed by applying the organic-membrane-sensitive layer using a new nebulization technique, which gives a high stability to the organic-membrane-sensitive layer. The performance of the resulting thin-film silver microelectrode is investigated by potentiometric measurements. The microelectrode provides a linear Nernstian response of high sensitivity (58 ± 0.5 mV/decade) covering the range of 1 × 10−6-1 × 10−1 mol L−1 of Ag+ ions with a fast response time (<20 s) and a relatively long life span (>3 months). The suggested microelectrode is successfully used in the analytical evaluation of Cl ions in some real environmental samples as well as in the simultaneous determination of halides using potentiometric titration. The results obtained are compared with those obtained by the commercial silver billet electrode and the conventional bulk ion-selective electrode based on the same ionophore.  相似文献   

12.
Dissociative adsorption and oxidation of glycine on Au(1 1 1) single crystal electrodes in alkaline solutions were studied in the present paper using cyclic voltammetry (CV), in situ FTIR spectroscopy (FTIRS) and electrochemical quartz crystal microbalance (EQCM). In situ FTIRS results demonstrated that adsorbates derived from glycine dissociative adsorption are adsorbed cyanide anions (CNad). The CNad species are stable on Au(1 1 1) surface in the potential region from −0.8 to 0.0 V, and can be oxidized when electrode potential is increased above 0.1 V. The oxidation of CNad releases surface active sites for further glycine oxidation. The products of CNad oxidation were determined by in situ FTIRS as cyanate (OCN), aurous cyanide (AuCN) and aurous di-cyanide (Au(CN)2). The formation of Au(CN)2 may initiate a dissolution of Au(1 1 1) surface atoms, which has been confirmed by a loss of surface mass determined in EQCM studies. It has revealed also that at high electrode potential region glycine may be split on Au(1 1 1) surface to form AuCH2NH2 and AuCOO adsorbates. Further oxidation of these species yielded CO2 and -NH2, and the AuCH2NH2 may be also combined with surface Au oxide to form methylamine. The CO2 species produced in glycine oxidation are all retained in alkaline solutions to generate carbonate (CO32−) and bicarbonate (HCO3) species that were clearly determined by in situ FTIRS studies.  相似文献   

13.
A novel ITO electrode surface modified with spherical and rod-shaped gold nanoparticles was prepared by a surfactant-assisted seeding growth approach, which provided a biocompatible matrix for the immobilization of hemoglobin (Hb). By electrochemical impedance measurements, gold nanoparticles modification and Hb immobilization on the electrode surfaces were characterized using [Fe(CN)6]3−/[Fe(CN)6]4− redox probe. Owing to the promoted electron transfer of Hb by gold nanoparticles, the Hb immobilized gold nanoparticles-modified ITO (Hb/Au/ITO) electrode exhibited an effective catalytic response to the reduction of H2O2 with good reproducibility and stability. The linear relationship existed between the catalytic current and the H2O2 concentration in the range of 1 × 10−5 to 7 × 10−3 M. The detection limit (S/N = 3) was 4.5 × 10−6 M.  相似文献   

14.
Stainless steel and graphite electrodes were individually addressed and polarized at −0.60 V vs. Ag/AgCl in reactors filled with a growth medium that contained 25 mM fumarate as the electron acceptor and no electron donor, in order to force the microbial cells to use the electrode as electron source. When the reactor was inoculated with Geobacter sulfurreducens, the current increased and stabilized at average values around 0.75 A m−2 for graphite and 20.5 A m−2 for stainless steel. Cyclic voltammetry performed at the end of the experiment indicated that the reduction started at around −0.30 V vs. Ag/AgCl on stainless steel. Removing the biofilm formed on the electrode surface made the current totally disappear, confirming that the G.sulfurreducens biofilm was fully responsible for the electrocatalysis of fumarate reduction. Similar current densities were recorded when the electrodes were polarized after being kept in open circuit for several days. The reasons for the bacteria presence and survival on non-connected stainless steel coupons were discussed. Chronoamperometry experiments performed at different potential values suggested that the biofilm-driven catalysis was controlled by electrochemical kinetics. The high current density obtained, quite close to the redox potential of the fumarate/succinate couple, presents stainless steel as a remarkable material to support biocathodes.  相似文献   

15.
A new amperometric glucose biosensor has been developed based on platinum (Pt) nanoparticles/polymerized ionic liquid-carbon nanotubes (CNTs) nanocomposites (PtNPs/PIL-CNTs). The CNTs was functionalized with polymerized ionic liquid (PIL) through directly polymerization of the ionic liquid, 1-vinyl-3-ethylimidazolium tetrafluoroborate ([VEIM]BF4), on carbon nanotubes and then used as the support for the highly dispersed Pt nanoparticles. The electrochemical performance of the PtNPs/PIL-CNTs modified glassy carbon (PtNPs/PIL-CNTs/GC) electrode has been investigated by typical electrochemical methods. The PtNPs/PIL-CNTs/GC electrode shows high electrocatalytic activity towards the oxidation of hydrogen peroxide. Taking glucose oxidase (GOD) as the model, the resulting amperometric glucose biosensor shows good analytical characteristics, such as a high sensitivity (28.28 μA mM−1 cm−2), wide linear range (up to 12 mM) and low detection limit (10 μM).  相似文献   

16.
A simple method based on potentiostatic polymerization was developed for the preparation of ternary manganese oxide-based nanocomposite films. The ternary nanocomposites, which were characterized using x-ray diffraction spectroscopy and x-ray photoelectron spectroscopy, showed that the manganese oxide within the film consisted of MnO2 and Mn2O3. Electrochemical measurements showed that the ternary nanocomposite electrode exhibited high specific capacitance (up to 320.6 F/g), which was attributed to the morphology of a polypyrrole/graphene/manganese-oxide (PPy/GR/MnOx) ternary nanocomposite. The experimental approach maximized the pseudocapacitive contribution from redox-active manganese oxide (MnOx) and polypyrrole (PPy), as well as the electrochemical double layer capacitive (EDLC) characteristic from graphene (GR) sheets. Long cyclic measurements indicated that the specific capacitance of the ternary nanocomposite film could retain 93% of its initial value over 1000 charge/discharge cycles, in the potential range of −0.2 to 0.7 V versus silver/silver chloride electrode (Ag/AgCl).  相似文献   

17.
Electrochemical modification of glassy carbon (GC) electrode by poly-4-nitroaniline (P4NA), electrochemical reduction of P4NA and applicability of electrode modified in this way for determination of copper(II) (Cu(II)) is reported in this study. Electrochemical surface modification was performed by cyclic voltammetry in the potential range between +0.9 V and +1.4 V vs. Ag/Ag+ (in 10 mM AgNO3) at the scan rate of 100 mV/s by 100 cycles in non-aqueous media. In order to provide electrochemical reduction of nitro groups on the P4NA-modified GC electrode surface (P4NA/GC), the cyclic voltammograms inducing/evidencing the reduction of nitro groups were performed in the potential range between −0.1 V and −0.8 V vs. Ag/AgCl/(sat.KCl) at the scan rate of 100 mV/s. The reduced P4NA/GC surfaces (Reduced-P4NA/GC) were treated with aqueous solution of nitrilotriacetic acid. The sensitivity of GC electrode modified in described way towards Cu(II) was investigated in Britton-Robinson buffer solution, pH 5.0. The potentiometric generic pulse technique was applied as innovative electrochemical method for detection of analytical signal. It was shown that GC electrodes modified in here described way will be suitable for the determination of Cu(II) in technological waste water and/or some other solutions containing Cu(II) ions.  相似文献   

18.
The electrochemical reduction of benzyl halides PhCH2X (X = Cl, Br and I) has been investigated at Ag and glassy carbon (GC) electrodes in CH3CN + 0.1 M Et4NClO4. At both electrodes reduction of PhCH2X involves irreversible electron transfer concerted with breaking of the carbon-halogen bond. All three halides exhibit a single 2e reduction peak at GC, whereas up to three peaks can be observed at the Ag electrode. Silver exhibits remarkable catalytic properties for the reduction process, which is positively shifted by 0.45-0.72 V with respect to GC. The mechanism of reduction of the organic halides at Ag involves adsorption of both the starting reagents and their reduction products. Adsorption of PhCH2Cl and PhCH2Br is weak and slow, whereas PhCH2I is more rapidly and strongly adsorbed, so that two distinct peaks can be observed for the reduction of the dissolved and adsorbed molecules. Controlled-potential electrolyses at Ag have shown that the process may be directed to the production of bibenzyl or toluene, depending on the applied potential.  相似文献   

19.
The electrochemical behavior of p-tert-butyl calix[8]arene has been investigated by cyclic voltammetry. The result shows that there is an irreversible electrochemical oxidative wave when the potential ranges from −0.3 to 1.6 V versus Ag/0.1 M AgNO3 in acetonitrile (Ag/Ag+). At 25 °C, the peak potential is ca. 1.43 V (versus Ag/Ag+) at scan rate of 0.05 V s−1. The number of the electrons transferred in the electrochemical reaction is four. The diffusion coefficient of p-tert-butyl calix[8]arene is 2.8 × 10−5 cm2 s−1. The diffusion activation energy is 12.3 kJ mol−1.  相似文献   

20.
The preparation of nano-size Ag particles and their application for forming nanostructured catalysts on various surfaces are described. Silver colloid solutions were prepared by reduction of Ag(I) salt by tin(II) and characterized by electron microscopy, X-ray diffraction and light absorption spectra. Depending on the colloid preparation conditions metal particles of 5-100 nm size were obtained. According to XRD data, the colloid particles contain Ag and SnO2 phases and no metallic Sn. The Ag nanoparticles were found to be efficient electrocatalysts for anodic oxidation of formaldehyde in alkaline solutions. The catalytic activity of a glassy carbon electrode with Ag surface coverage of 0.3-1 μg cm−2 is similar or even exceeds that of the metallic electrode. The silver particles were used for the initiation of the electroless copper deposition process on dielectrics; for that 1-2 μg cm−2 Ag is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号