首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new gold nanoparticles-modified electrode (GNP/LC/GCE) was fabricated by self-assembling gold nanoparticles to the surface of the l-cysteine-modified glassy carbon electrode. The modified electrode showed an excellent character for electrocatalytic oxidization of uric acid (UA) and ascorbic acid (AA) with a 0.306 V separation of both peaks, while the bare GC electrode only gave an overlapped and broad oxidation peak. The anodic currents of UA and AA on the modified electrode were 6- and 2.5-fold to that of the bare GCE, respectively. Using differential pulse voltammetry (DPV), a highly selective and simultaneous determination of UA and AA has been explored at the modified electrode. DPV peak currents of UA and AA increased linearly with their concentration at the range of 6.0 × 10−7 to 8.5 × 10−4 mol L−1 and 8.0 × 10−6 to 5.5 × 10−3 mol L−1, respectively. The proposed method was applied for the detection of UA and AA in human urine with satisfactory result.  相似文献   

2.
A glassy carbon electrode modified with LaHCF was constructed and was characterized by cyclic voltammetry (CV) and electrochemical impedance spectrum (EIS). The resulting LaHCF modified glassy carbon electrode had a good catalytic character on uric acid (UA) and was used to detect uric acid and ascorbic acid (AA) simultaneously. This modified electrode exhibits potent and persistent electron-mediating behavior followed by well-separated oxidation peaks towards UA and AA with activation overpotential. For UA and AA in mixture, one can well separate from the other with a potential large enough to allow the determination of one in presence of the other. The DPV peak currents obtained increased linearly on the UA in the range of 2.0 × 10−7 to 1.0 × 10−4 mol/L with the detection limit (signal-to-noise ratio was 3) for UA 1.0 × 10−7 mol/L. The proposed method showed excellent selectivity and stability, and the determination of UA and AA simultaneously in urine was satisfactory.  相似文献   

3.
Functionalized polypyrrole film were prepared by incorporation of [Fe(CN)6]4− as a doping anion, during the electropolymerization of pyrrole onto a carbon paste electrode in an aqueous solution by potentiostatic method. The electrochemical behavior of dopamine (DA) and ascorbic acid (AA) in one solution was studied at the surface of bare and modified carbon paste electrodes using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and differntial pulse voltammetry (DPV) methods. The well separated anodic peaks for oxidation of DA and AA were observed at the surface of the modified carbon paste electrode under optimum condition (pH 6.00), which can be used for determination of these species simultaneously in mixture by LSV and DPV methods. The linear analytical curves were obtained in the ranges of 0.10-1.00 mM and 0.10-0.95 mM for ascorbic acid and 0.10-1.20 mM and 0.20-0.95 mM for dopamine concentrations using LSV and DPV methods, respectively. The detection limits (2σ) were determined as 3.38 × 10−5 M and 1.34 × 10−5 M of ascorbic acid and 3.86 × 10−5 M and 1.51 × 10−5 M of dopamine by CV and DPV methods.  相似文献   

4.
A glassy carbon electrode modified with CeO2 nanoparticles was constructed and was characterized by electrochemical impedance spectrum (EIS) and cyclic voltammetry (CV). The resulting CeO2 nanoparticles modified glassy carbon electrode (CeO2 NP/GC electrode) was used to detect uric acid (UA) and ascorbic acid (AA) simultaneously in mixture. This modified electrode exhibits potent and persistent electron-mediating behavior followed by well-separated oxidation peaks towards UA and AA with activation overpotential. For UA and AA in mixture, one can well separate from the other with a potential difference of 273 mV, which was large enough to allow the determination of one in presence of the other. The DPV peak currents obtained in mixture increased linearly on the UA and AA in the range of 5.0 × 10−6 to 1.0 × 10−3 mol/L and 1.0 × 10−6 to 5.0 × 10−4 mol/L, with the detection limit (signal-to-noise ratio was 3) for UA and AA were 2.0 × 10−7 and 5.0 × 10−6 mol/L, respectively. The proposed method showed excellent selectivity and stability, and the determination of UA and AA simultaneously in serum was satisfactory.  相似文献   

5.
A carbon-paste electrode (CPE) chemically modified with the cobalt(II)-4-methylsalophen (CoMSal) as a Schiff base complex was used as a highly sensitive and fairly selective electrochemical sensor for simultaneous determination of minor mounts of ascorbic acid (AA) and cysteine. This modified electrode shows very efficient electrocatalytic activity for anodic oxidation of both AA and cysteine via substantially decreasing of anodic overpotentials for both compounds. The mechanism of electrochemical oxidation of both AA and cysteine using CoMSal-modified electrode was thoroughly investigated by cyclic voltammetry and polarization studies. Results of cyclic voltammetry (CV) and differential pulse voltammetry (DPV) using this modified electrode show two well-resolved anodic waves for the oxidation of AA and cysteine, which makes it possible for simultaneous determination of both compounds. A linear range of 1 × 10−4 to 5 × 10−7 M for cysteine in a constant concentration of 1 × 10−4 M AA in buffered solution (as a background electrolyte) was obtained from DPV measurements using this electrode. The linear range, which is obtained for AA in the presence of 1 × 10−4 M cysteine, was in the range of 1 × 10−4 to 1 × 10−6 M. The modified electrode has good reproducibility (RSD ≤ 2.5%), low detection limit (sub-micromolar) and high sensitivity for the detection of both AA and cysteine with a very high stability in its voltammetric response. Differential pulse voltammetry using the modified electrode exhibited a reasonable recovery for a relatively wide concentration range of cysteine spiked to a synthetic human serum sample.  相似文献   

6.
The electrochemical behavior of ascorbic acid (AA) and uric acid (UA) at the surface of a carbon-paste electrode modified with incorporate thionine-nafion ion-paired was thoroughly investigated. The results show the presence of nafion inside the matrix of modified electrode, because of the effective ion-pairing and hydrophobic interactions, significantly enhances the stability of thionine as an electron mediator inside the modified electrode. A high reproducibility in voltammetric response to analyte species results because of this enhancement. The cyclic voltammetric studies using the prepared modified electrode show the best electrocatalytic property for the electro-oxidation of AA and noticeable decrease in anodic overpotential. Although the catalytic effect is observed to some extent for UA, the property cannot be seen for other biologically reducing agents such as cysteine. The voltammetric studies using the thionine-nafion modified electrode show two well-resolved anodic peaks for AA and UA, revealing the possibility of the simultaneous electrochemical detection of these compounds in the presence of biological thiols. The detection limits of 5 × 10−8 and 5 × 10−7 M were obtained in differential pulse voltammetric (DPV) measurements for UA and AA, respectively. Spectrophotometric investigations were used to confirm the selective catalytic effect of thionine in oxidation of AA and to some extent, UA. The detection system is stable (R.S.D. for the slope of the calibration curves was less than 4% for six measurements in one month) and is of high selectivity for electro-oxidation of AA and UA in complex biological and clinical matrices. The prepared modified electrode is applied for the DPV measurement of AA in pharmaceutical preparations. Also, the electrode is used to determine UA in human urine and serum samples and recovery of the amounts of UA added to these complex samples.  相似文献   

7.
The electrochemistry of dopamine (DA) was investigated by cyclic voltammetry (CV) and differential pulse voltammograms (DPV) at a glassy carbon electrode modified by the hybridization adducts of Fc-SWNTs. The electro-oxidation of DA could be catalyzed by Fc/Fc+ couple as a mediator and had a higher electrochemical response due to the unique carbon surface of carbon nanotubes. The anodic peaks of DA, ascorbic acid (AA) and uric acid (UA) in their mixture can be well separated by the prepared electrode. Under optimum conditions linear calibration graphs were obtained over the DA concentration range 5.0 × 10−6 to 3.0 × 10−5 M with a correlation coefficient of 0.9998 and a detection limit of 5.0 × 10−8 M based on the equation Cm = 3sb1/m. The modified electrode has been successfully applied for the assay of DA in human blood serum. This work provides a simple and easy approach to selectively detect DA in the presence of AA and UA.  相似文献   

8.
A novel ECR-modified electrode is fabricated by electrodeposition of Eriochrome Cyanine R (ECR) at a glassy carbon (GC) electrode by cyclic voltammetry (CV) in double-distilled water. The characterization of the ECR film modified electrode is carried out by atomic force microscopy (AFM), infrared spectra (IR), spectroelectrochemistry and cyclic voltammetry. The results show that a slightly heterogeneous film formed on the surface of the modified electrode, and the calculated surface concentration of ECR is 2 × 10−10 mol/cm−2. The ECR film modified GC electrode shows excellent electrocatalytic activities toward the oxidation of serotonin (5-HT) and norepinephrine (NE). Furthermore, the modified electrode can separately detect 5-HT and NE, even in the presence of 200-fold concentration of ascorbic acid (AA) and 25-fold concentration of uric acid (UA). Using differential pulse voltammetry (DPV), the peak currents of 5-HT and NE recorded in pH 7 solution are linearly dependent on their concentrations in the range of 0.05-5 μM and 2-50 μM, respectively. The limits of detection are 0.05 and 1.5 μM for 5-HT and NE, respectively. The ECR film modified electrode can be stored stable for at least 1 week in 0.05 M PBS (pH 7) at 4 °C in a refrigerator. Owing to its excellent selectivity and sensitivity, the modified electrode could provide a promising tool for the simultaneous determination of 5-HT and NE in complex biosamples.  相似文献   

9.
Fang Ye  Lishi Wang 《Electrochimica acta》2008,53(12):4156-4160
5-[o-(4-Bromine amyloxy)phenyl]-10,15,20-triphenylporphrin (o-BrPETPP) was electropolymerized on a glassy carbon electrode (GCE), and the electrocatalytic properties of the prepared film electrode response to dopamine (DA) oxidation were investigated. A stable o-BrPETPP film was formed on the GCE under ultrasonic irradiation through a potentiodynamic process in 0.1 M H2SO4 between −1.1 V and 2.2 V versus a saturated calomel electrode (SCE) at a scan rate of 0.1 V s−1. The film electrode showed high selectivity for DA in the presence of ascorbic acid (AA) and uric acid (UA), and a 6-fold greater sensitivity to DA than that of the bare GCE. In the 0.05 mol L−1 phosphate buffer (pH 6.0), there was a linear relationship between the oxidation current and the concentration of DA solution in the range of 5 × 10−7 mol L−1 to 3 × 10−5 mol L−1. The electrode had a detection limit of 6.0 × 10−8 mol L−1(S/N = 3) when the differential pulse voltammetric (DPV) method was used. In addition, the charge transfer rate constant k = 0.0703 cm s−1, the transfer coefficient α = 0.709, the electron number involved in the rate determining step nα = 0.952, and the diffusion coefficient Do = 3.54  10−5 cm2 s−1 were determined. The o-BrPETPP film electrode provides high stability, sensitivity, and selectivity for DA oxidation.  相似文献   

10.
A novel poly rutin (Ru) modified paraffin-impregnated graphite electrode (WGE) was fabricated by electrochemical method. The field emission scanning electron microscope (FE-SEM), infrared spectra (IR), in situ UV-spectroelectrochemical and electrochemical techniques proved the immobilization of rutin on WGE. Ru undergoes electrochemical oxidation in two ways related to the two catechol hydroxyl groups and the other two hydroxyl groups; the former not only carries out a two-electron two-proton reversible reaction, but also produces unstable phenoxy radicals which readily polymerize to strongly adhere to WGE surface companying Ru monomer embeded and adsorbed in the film (Ru/WGE). The Ru/WGE displayed strong catalytic function for the oxidation of adrenalin (EP), serotonin (5-HT), and ascorbic acid (AA) and resolved the overlap voltammetric response of EP and AA into two well-defined voltammetric peaks of about 172 mV with DPV. A linear response in the range of 3.0-90.0 μM with detection limit (s/n = 3) of 8.0 × 10−7 M for EP was obtained in coexistence of AA (0.01 mM).  相似文献   

11.
A carbon paste electrode (CPE) modified with thionine immobilized on multi-walled carbon nanotube (MWCNT), was prepared for simultaneous determination of ascorbic acid (AA) and acetaminophen (AC) in the presence of isoniazid (INZ). The electrochemical response characteristics of the modified electrode toward AA, AC and INZ were investigated by cyclic and differential pulse voltammetry (CV and DPV). The results showed an efficient catalytic role for the electro-oxidation of AA and AC, leading to a remarkable peak resolution (∼303 mV) for two compounds. On the other hand, the presence of INZ, which is considered as important drug interference for AC, does not affect the voltammetric responses of these pharmaceuticals. The mechanism of the modified electrode was analyzed by monitoring the CVs at various potential sweep rates and pHs of the buffer solutions. Under the optimum conditions, the calibration curves for AA, AC and INZ were obtained in the range of 1 × 10−6 to 1 × 10−4 M, 1 × 10−7 to 1 × 10−4 M and 1 × 10−6 to 1 × 10−4 M, respectively. The prepared modified electrode shows several advantages such as simple preparation method, high sensitivity, long-time stability, ease of preparation and regeneration of the electrode surface by simple polishing and excellent reproducibility. The proposed method was applied to determination of AA, AC and INZ in commercial drugs and in plasma samples and the obtained results were satisfactory.  相似文献   

12.
A self-assembled bilayer lipid-like membrane (BLM) supported on glassy carbon electrode (GCE) was fabricated using 5,5-ditetradecyl-2-(2-trimethyl-ammonioethyl)-1,3-dioxane bromide (DTDB) for epinephrine (EP) determination in the presence of ascorbic acid (AA). This modified electrode (DTDB/GCE) has strong membrane adsorption accumulation and electrocatalytic ability toward EP and AA. The oxidation of EP was controlled by double step adsorption accumulation process of the DTDB-BLM. The parameters of fitted Langmuir isotherm Γmax, BADS, and ΔGADS values were determined as 1.0×10−11 mol cm−2, 2.04×106 dm3 mol−1, and −45.17 kJ mol−1 for the fist step for EP concentration less than 1 mM, and 4.92×10−11 mol cm−2, 7.35×104 dm3 mol−1, and −37.1 kJ mol−1 for the second step for EP concentration higher than 1 μM. The DPV peaks for EP and AA oxidations were appeared at 0.220 and 0.085 V versus SCE, respectively, allowing the determination of EP in the presence of high concentration of AA. The advantage of DTDB-BLM was demonstrated experimentally in comparison with other three BLMs, and attributed to the dioxane group as well as the suitable length of the carbon chain of DTDB molecule. The current response of the DTDB/GCE was fast and reproducible, suitable for the electrochemical sensing in flow-injection systems. A linear range of 1×10−8 to 1×10−4 M EP was preliminary obtained using a simple setup.  相似文献   

13.
A novel electroactive material for ascorbic acid (AA) determination was successfully prepared by plating/potential cycling method. The cobalt film was first deposited on the surface of glassy carbon electrode (GCE) in CoSO4 solution by potential cycling, and then a cobalt film on the surface of GCE was activated by potential cycling in 0.1 mol L−1 NaOH. The electrochemical performance of the resulted film (Co/GCE) and factors affecting its electrochemical activity were investigated by cyclic voltammetry and amperometry. This film electrode exhibited good electrocatalytic activity to the oxidation of AA. This biosensor had a fast response of AA less than 3 s and excellent linear relationships were obtained in the concentration range of 3 × 10−7 to 1 × 10−4 mol L−1 with a detection limit of 2 × 10−7 mol L−1 (S/N = 3) under the optimum conditions. Moreover, the selectivity, stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   

14.
Binuclear copper complex (2-[bis(2-aminoethyl)amino]ethanol, 4,4′-bipyridine bridged dicopper(II) complex) was grafted onto the surface of a glassy carbon electrode (GCE) using the cyclic voltammetric method in a phosphate buffer solution (PBS). The modified electrode resulted in efficient electrocatalytic activity for anodic oxidation of uric acid (UA) and ascorbic acid (AA) via a substantial decrease in anodic over-potentials for both compounds. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) using this modified electrode result in two well-resolved anodic waves for the oxidation of UA and AA in mixed solution, making possible the simultaneous determination of both compounds. Linear analytical curves were obtained in the ranges 5.0–300.0 μM and 5.0–160.0 μM for UA and AA concentrations through DPV methods, respectively. The detection limits were 2.0 μM of UA and AA. This electrode was used for UA and AA determinations in urine samples with satisfactory results.  相似文献   

15.
A polymerized film of eriochrome black T (EBT) was prepared on the surface of a glassy carbon (GC) electrode in alkaline solution by cyclic voltammetry (CV). The redox response of the poly(EBT) film at the GC electrode appeared in a couple of redox peak in 0.1 M hydrochloride and the pH dependent peak potential was −55.1 mV/pH which was close to the Nernst behavior. The poly(EBT) film-coated GC electrode exhibited excellent electrocatalytic activity towards the oxidations of dopamine (DA), ascorbic acid (AA) and uric acid (UA) in 0.05 mM phosphate buffer solution (pH 4.0) and lowered the overpotential for oxidation of DA. The polymer film modified GC electrode conspicuously enhanced the redox currents of DA, AA and UA, and could sensitively and separately determine DA at its low concentration (0.1 μM) in the presence of 4000 and 700 times higher concentrations of AA and UA, respectively. The separations of anodic peak potentials of DA-AA and UA-DA reached 210 mV and 170 mV, respectively, by cyclic voltammetry. Using differential pulse voltammetry, the calibration curves for DA, AA and UA were obtained over the range of 0.1-200 μM, 0.15-1 mM and 10-130 μM, respectively. With good selectivity and sensitivity, the present method provides a simple method for selective detection of DA, AA and UA in biological samples.  相似文献   

16.
A new method for the determination of nimesulide was established based on the multiwalled carbon nanotubes (MWCNTs) modified glassy carbon electrode (MWCNTs/GCE). In 0.2 M PBS (pH 6.6) buffer solution, the MWCNTs/GCE showed a remarkable catalytic and enhancement effect on reduction of the nimesulide. The reduction peak potential of nimesulide shifted positively from −0.665 V at bare GCE to −0.553 V at MWCNTs/GCE, and the sensitivity increased ca. 7 times. A linear dynamic range of 3.2 × 10−7-6.5 × 10−5 M (R = 0.9992) with a detection limit of 1.6 × 10−7 M was obtained. The electrochemical behaviors of nimesulide were studied and electron-transfer coefficient (α = 0.45), proton number (X = 1) and electron-transfer number (n = 2) have been determined. This method has been used to determine the content of nimesulide in medical tablets. The recovery was determined to be 93.2-106.2% by means of standard addition method. Compared with UV-vis spectrometry, the method was not remarkable difference.  相似文献   

17.
A novel modified glassy carbon electrode (GCE) with a binuclear copper complex was fabricated using a cyclic voltammetric method in phosphate buffer solution. This modified electrode shows very efficient electrocatalytic activity for anodic oxidation of both dopamine (DA) and ascorbic acid (AA) via substantial decrease in anodic overpotentials for both compounds. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) using this modified electrode show two well-resolved anodic waves for the oxidation of DA and AA in mixed solution, which makes it possible for simultaneous determination of both compounds. Linear analytical curves were obtained in the ranges 2.0–120.0 μM and 5.0–160.0 μM for DA and AA concentrations by using DPV methods, respectively. The detection limits were 1.4 × 10−6 M of DA and 2.8 × 10−6 M of AA. This electrode was used for AA and DA determinations in medicine and foodstuff samples with satisfactory results.  相似文献   

18.
Multinegatively charged metal complex, hexacyanoferrate ([Fe(CN)6]4−), was electrostatically trapped in the cationic polymer film of N,N-dimethylaniline (PDMA) which was electrochemically deposited on the boron-doped diamond (BDD) electrode by controlled-potential electro-oxidation of the monomer. This ferrocyanide-trapped PDMA film was used to catalyze the oxidation of ascorbic acid (AA). Increase in the oxidation current response with a negative shift of the anodic peak potential was observed at the cationic PDMA film-coated BDD (PDMA|BDD) electrode, compared with that at the bare BDD electrode. A more drastic enhancement in the oxidation peak current as well as more negative shift of oxidation potential was found at the ferrocyanide-trapped PDMA film-coated BDD ([Fe(CN)6]3−/4−|PDMA|BDD) electrode. This [Fe(CN)6]3−/4−|PDMA|BDD electrode can be used as an amperometric sensor of AA. Ferrocyanide, electrostatically trapped in the polymer film shows more electrocatalytic activity than that coordinatively attached to the polymer film or dissolved in the solution phase. The electrocatalytic current depends on the surface coverage of ferricyanide, ΓFe, within the polymer film. Diffusion coefficient (D) of AA in the solution was estimated by rotating disk electrode voltammetry: D = (5.8 ± 0.3) × 10−6 cm2 s−1. The second-order rate constant for the catalytic oxidation of AA by ferricyanide was also estimated to be 9.0 × 104 M−1 s−1. In the hydrodynamic amperometry using the [Fe(CN)6]3−/4−|PDMA|BDD electrode, a successive addition of 1 μM AA caused the successive increase in current response with equal amplitude and the sensitivity was calculated as 0.233 μA cm−2 μM−1.  相似文献   

19.
A novel electro-active material was successfully prepared with Fe(CN)63− ions loaded by electrostatic interaction onto the layer of poly(allylamine) hydrochloride (PAH), which was first assembled on prepared poly(sodium 4-styrenesulfonate) (PSS)-doped porous calcium carbonate (CaCO3) microspheres. Further, an electrochemical sensor for use in ascorbic acid (AA) detection was constructed with the use of the above electro-active materials embedded into a chitosan (CS) sol-gel matrix as an electron mediator. The electrocatalytic oxidation of AA by ferricyanide was observed at the potential of 0.27 V, which was negative-shifted compared with that by direct electrochemical oxidation of AA on a glassy carbon electrode. The experimental parameters, including the pH value of testing solution and the applied potential for detection of AA, were optimized. The current electrochemical sensor not only exhibited a good reproducibility and storage stability, but also showed a fast amperometric response to AA in a linear range (1.0 × 10−6 to 2.143 × 10−3 M), a low detection limit (7.0 × 10−7 M), a fast response time (<6 s), and a high sensitivity (−4.5127 μA mM−1).  相似文献   

20.
The copper was deposited on glassy carbon (GC) and indium tin oxide (ITO) electrodes by electrochemical method. The copper structures on electrode were characterized by atomic force microscope, X-ray diffractometeric pattern and differential pulse voltammetric studies. Optimal conditions for uniform growth of copper structures on the electrode were established. Voltammetric sensor was fabricated using the copper deposited GC electrode for the simultaneous detection and determination of uric acid (UA) and homovanillic acid (HVA) in the presence of excess concentrations of ascorbic acid (AA). The voltammetric signals due to AA and UA oxidation were well separated with a potential difference of 400 mV and AA did not interfere with the measurement of UA and HVA at the GC/Cu electrode. Linear calibration curves were obtained in the concentration range 1-40 μM for AA and 20-50 μM for UA at physiological pH and a detection limit of 10 nM of UA in the presence of 10-fold excess concentrations of AA was achieved. The simultaneous detection of submicromolar concentrations of AA, UA and HVA was achieved at the GC/Cu electrode. The practical utility of the present GC/Cu modified electrode was demonstrated by measuring the AA content in Vitamin C tablet, UA content in human urine and blood serum samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号