首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The application of detonation nanodiamonds (NDs) as probes for protein capture and electrophoretic collection was investigated. NDs were chemically modified in a series of reactions to produce a ND-NH2 product that had increased chemical homogeneity. The product was characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). FTIR spectra were taken using an IR vacuum cuvette and the samples were dehydrated at different temperatures. The ND-NH2 product was capable of conjugating to N-hydroxysuccinimide derivatives of TAMRA and biotin. We calculated that the number of chemically attached TAMRA molecules on ND-NH2 was ∼ 1 molecule/nm2. The singly conjugated TAMRA-ND (T-ND) and doubly conjugated TAMRA-ND-Biotin (T-ND-B) products formed stable aqueous colloidal suspensions. T-ND and T-ND-B were collected on planar electrodes and silicon field tip arrays using a field of 10 V/cm. The rate of collection for the aminated ND is dependent upon field strength and an exponential decrease in current was observed as a function of time. Streptavidin was captured by the T-ND-B bioconjugate probe and this nanoparticle–protein complex was collected from solution by electrophoresis.  相似文献   

2.
SAPO-34分子筛常用于甲醇制烯烃(MTO)反应中。以硅酸钠、硝酸铝和氨水为原料采用碱滴酸加料方式制备一种硅改性拟薄水铝石,再以硅改性拟薄水铝石为硅源和铝源、磷酸(H3PO4)为磷源、四乙基氢氧化铵(TEAOH)为模板剂采用水热合成法制备SAPO-34分子筛。采用XRD、SEM、FT-IR、NH3-TPD等表征手段对合成的硅改性拟薄水铝石及SAPO-34分子筛进行表征并对其MTO催化性能进行评价。结果表明,在硅铝物质的量比为0.08~0.5时,硅的引入对合成纯相拟薄水铝石无影响,但硅的引入量对拟薄水铝石的结晶度及形貌有一定影响;在硅铝物质的量比为0.2~0.5时,以硅改性拟薄水铝石为硅源和铝源可以合成纯相SAPO-34分子筛,MTO催化反应甲醇转化率可达99%以上,双烯选择性最高达87%以上,并拥有较高的乙烯选择性。  相似文献   

3.
BACKGROUND: Investigations of chemical modification of electrode surfaces and immobilization of nitrogenated bases and oligonucleotides are considered essential for the construction of DNA electrochemical nanodevices. Modification of gold electrode surfaces with poly(4‐aminophenol) was carried out in order to produce polymers capable of immobilizing purine bases and oligonucleotides. RESULTS: Gold electrodes coated with poly(4‐aminophenol) showed improved analytical characteristics and considerably enhanced the electrochemical signals associated with the detection of adenine and guanine by factors of ca 3 and ca 6, respectively, when compared with non‐coated gold surfaces. Impedance studies indicated higher charge transfer impedance to modified electrodes containing adenosine monophosphate. Atomic force microscopy images showed that nitrogenated bases have a strong influence over the morphology of the modified electrode surface. It was observed that the modified electrode containing guanine presents globular morphology. CONCLUSION: The modified electrodes increased the amplitude of the current signal of nitrogenated bases when compared to non‐coated gold surfaces and produced good response and peaks to the detection of an oligonucleotide. This work presents, for the first time, the electropolymerization of 4‐aminophenol on gold electrodes, as well as the detection of nitrogenated bases and an oligonucleotide incorporated on these modified electrodes. Copyright © 2007 Society of Chemical Industry  相似文献   

4.
In this study, InGaZnO (IGZO) thin film transistors (TFTs) with a dual active layer (DAL) structure are fabricated by inserting a homogeneous embedded conductive layer (HECL) in an amorphous IGZO (a-IGZO) channel with the aim of enhancing the electrical characteristics of conventional bottom-gate-structure TFTs. A highly conductive HECL (carrier concentration at 1.6 × 1013 cm-2, resistivity at 4.6 × 10-3 Ω∙cm, and Hall mobility at 14.6 cm2/Vs at room temperature) is fabricated using photochemical H-doping by irradiating UV light on an a-IGZO film. The electrical properties of the fabricated DAL TFTs are evaluated by varying the HECL length. The results reveal that carrier mobility increased proportionally with the HECL length. Further, a DAL TFT with a 60-μm-long HECL embedded in an 80-μm-long channel exhibits comprehensive and outstanding improvements in its electrical properties: a saturation mobility of 60.2 cm2/Vs, threshold voltage of 2.7 V, and subthreshold slope of 0.25 V/decade against the initial values of 19.9 cm2/Vs, 4.7 V, and 0.45 V/decade, respectively, for a TFT without HECL. This result confirms that the photochemically H-doped HECL significantly improves the electrical properties of DAL IGZO TFTs.  相似文献   

5.
D. Pradhan  D. Mantha  R.G. Reddy   《Electrochimica acta》2009,54(26):6661-6667
Electrorefining of aluminum alloy was investigated using AlCl3 and 1-ethyl-3-methyl-imidazolium chloride (EMIC) (molar ratio AlCl3:EMIC = 1.65:1) ionic liquid electrolyte on copper and aluminum cathodes at temperature of 90 ± 3 °C and cell voltage of 1.5 V. The effect of electrode surface modification and cathode overpotential on deposit characteristics of aluminum was investigated. The surface modification of electrodes reduced the dendritic depositions of aluminum. It was also observed that cathodic overpotentials obtained from experiments using modified electrodes are significantly lower than those of unmodified electrodes. A non-dendritic deposit of aluminum was observed even after prolonged electrorefining of 25 h. Pure aluminum deposits were obtained for all experiments with the current efficiencies in the range of 94–99%.  相似文献   

6.
Protoporphyrin IX (PPIX) was immobilized on Au surfaces for the electrochemical oxidation of dopamine (DA) and epinephrine (EP). Two procedures for the immobilization were employed. One class of modified electrodes was prepared by immobilizing the PPIX into polypyrrole (PPy) films synthesized by anodic electropolymerization. The other procedure involved the immobilization of PPIX on an electrode modified by a 11-mercaptoundecanoic acid (MUA) self-assembled monolayer (SAM). The modified surfaces were characterized by cyclic voltammetry (CV).The efficiency of these modified surfaces for the electrochemical oxidation of DA and EP was investigated and compared. The peak potential for the oxidation of each analyte at the different electrode surfaces was determined by square-wave voltammetry (SWV).The dependence of the sensitivity of the electrodes for the detection of the catecholamines on the applied potential was also measured. The SAM-based electrodes showed better selectivity for detecting DA in the potential range between 0.2 and 0.4 V versus Pt (QRE). However, higher sensitivity and linearity were observed for the film-based electrodes.  相似文献   

7.
Sol-gel films prepared from quaternary amine functionalized silicon alkoxide precursor on electrode surfaces have been investigated as anion-exchange and permselective coatings for electroanalytical investigations. These modified electrodes were evaluated with Fe(CN)63− and Ru(bpy)32+ as the analytes using cyclic voltammetry. At low solution pH, the anionic analyte preconcentrated within the functionalized sol-gel coating and resulted in an improvement in detection limit of about 2 orders of magnitude compared to bare electrodes, but the response for the cationic analyte was suppressed. The modified electrodes are rugged and reproducible and can be regenerated. We have also shown that the anion-exchange and permselective properties of the modified electrodes can be affected by the composition, concentration, and pH of the support electrolyte.  相似文献   

8.
Highly uniform hole spacing micro brushes were fabricated based on aligned carbon nanotube (CNT) arrays synthesized by chemical vapor deposition method with the assistance of anodic aluminum oxide (AAO) template. Different micro brushes from CNT arrays were constructed on silicon, glass, and polyimide substrates, respectively. The micro brushes had highly uniform hole spacing originating from the regularly periodic pore structure of AAO template. The CNT arrays, serving as bristles, were firmly grafted on the substrates. The brushes can easily clean particles with scale of micrometer on the surface of silicon wafer and from the narrow spaces between the electrodes in a series of cleaning experiments. The results show the potential application of the CNT micro brushes as a cleaning tool in microelectronics manufacture field.  相似文献   

9.
Novel inorganic film modified electrodes have been prepared by chemical deposition of a thin palladium pentacyanonitrosylferrate (PdPCNF) film on the surface of aluminum substrate. The modification process including the electroless deposition of metallic palladium on the aluminum electrode surface from PdCl2+25% ammonia solution and chemical derivatization of deposited palladium to the PdPCNF film in 0.1 M Na2[Fe(CN)5NO]+0.5 M KNO3+HNO3 solution (pH 1.5-2.5), are described. The aluminum-based modified electrodes exhibit, one pair of well-defined voltammetric peaks which correspond to the Fe(III)/Fe(II) transition in complex structure. The effect of pH, ammonium, alkali metal and alkaline earth metal cations of supporting electrolyte on the electrochemical characteristics of the modified electrode was studied in detail. Diffusion coefficients of hydrated ammonium and alkali metal cations in the film (D), transfer coefficient (α) and transfer rate constant for electron (ks), were determined. The high stability of this modified electrode makes it attractive in practical application.  相似文献   

10.
The effects of interposing a molten aluminum alloy layer between pure aluminum and silicon nitride on the strength of joining and properties of the joined sample were investigated. An aluminum-based alloy containing 12 wt% silicon with a melting point lower than the 660°C melting point of pure aluminum was joined to pure aluminum and a silicon nitride substrate by using polymethylphenylsiloxane. A specimen with the same joining area (1600 mm2) and no alloy layer was prepared for comparison. In thermal cycling tests of Δ190 K, cooled at –40°C and heated at 150°C, the specimen without the alloy layer failed after 200 cycles, whereas the specimen with the alloy layer failed after 500 cycles. The bending strength of the sample with the alloy was approximately 1.5 times that of the sample without the alloy. These results indicate that the alloy layer facilitated the strong joining of the aluminum and substrate.  相似文献   

11.
H. Olivia  K. Honda 《Electrochimica acta》2004,49(13):2069-2076
A sensitive and stable glucose biosensor for in vivo monitoring has been developed using boron-doped diamond microfiber (BDDMF) electrodes. The electrodes were modified with platinum nano-particles to detect H2O2, which was enzymatically produced by glucose oxidase (GOx) immobilized on the electrode surface. The platinum-modified BDDMF (Pt-BDDMF) electrodes exhibited much higher sensitivity compared to Pt-microfiber electrodes, Pt electrodes and Pt-modified diamond thin film electrodes. Deposition conditions for Pt nano-particles on the BDDMF electrodes and immobilization of GOx were optimized. GOx/overoxidized polypyrrole (OPPy)/Pt-modified BDDMF electrodes were applied for continuous interference-free glucose monitoring. Amperometric measurements of glucose showed a linear response in the range of 1-70 mM, with an R.S.D. of 3.7% for five injections of 100 μM glucose. The electrodes exhibited good stability over 3 months with no detected anodic current for ascorbic acid (AA), which is an interfering compound.  相似文献   

12.
Nickel tetrakis(benzylmercapto)phthalocyanine (NiTBMPc) and nickel tetrakis(dodecylmercapto)phthalocyanine (NiTDMPc) complexes were synthesized and their spectral and electrochemical properties reported. The CV showed four or five redox processes for NiTBMPc and NiTDMPc, respectively. For the first time, spectroelectrochemistry gave evidence for the formation of NiII/NiI process in a NiPc complex. The rest of the processes were ring based. The NiTBMPc complex was successfully deposited on both gold and glassy carbon electrodes by electropolymerisation while NiTDMPc complex was deposited on gold electrode only. The films were electro-transformed in aqueous 0.1 M NaOH solution to the O–Ni–O oxo bridged form. The modified electrodes were characterized using electrochemical impedance spectroscopy and the results showed typical behavior for modified electrodes. Electrodes with poly-Ni(OH)Pcs films exhibited higher charge transfer resistance values, Rp than their corresponding poly-NiPcs films counterparts. All the modified electrodes showed improved catalytic activities than the unmodified electrodes towards nitrite ions electrooxidation. Better catalytic activities were observed for the modified electrodes when they were transformed to O–Ni–O oxo bridge form. All the modified electrodes exhibited high resistance to electrode surface passivation.  相似文献   

13.
The corrosion behavior of 7075 aluminum (Al), copper modified Al (Al/Cu), polypyrrole modified Al (Al/PPy) and copper (under layer)/polypyrrole (top layer) modified Al (Al/Cu/PPy) samples were investigated in 3.5% NaCl solution. The copper plating on aluminum was carried out from acidic copper sulphate solution by electroless method. Polypyrrole (PPy) was electrochemically synthesized on Al and Al/Cu electrodes from 0.1 M pyrrole containing 0.4 M oxalic acid solution using cyclic voltammetry technique. The films synthesized were characterized by Fourier transform infrared spectroscopy (FT-IR). The thermal stability of PPy films was investigated by thermogravimetric analysis (TGA). The surface morphologies were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The corrosion behavior of samples was investigated by electrochemical impedance spectroscopy (EIS) and anodic polarization curves. The data obtained showed that the synthesis of PPy on top of the Cu layer significantly enhances the corrosion resistance of Al by exhibiting a barrier effect against the attack of corrosive environment.  相似文献   

14.
Functionalized synthetic oligonucleotides are finding growing applications in research, clinical studies, and therapy. However, it is not easy to prepare them in a biocompatible and highly efficient manner. We report a new strategy to synthesize oligonucleotides with promising nucleic acid targeting and detection properties. We focus in particular on the pH sensitivity of these new probes and their high target specificity. For the first time, human copper(I)‐binding chaperon Cox17 was applied to effectively catalyze click labeling of oligonucleotides. This was performed under ultramild conditions with fluorophore, peptide, and carbohydrate azide derivatives. In thermal denaturation studies, the modified probes showed specific binding to complementary DNA and RNA targets. Finally, we demonstrated the pH sensitivity of the new rhodamine‐based fluorescent probes in vitro and rationalize our results by electronic structure calculations.  相似文献   

15.
晶体硅太阳能电池背场铝浆研究   总被引:1,自引:0,他引:1  
朱鹏  葛明  樊东娌 《化工时刊》2011,25(10):23-26
研究了晶体硅太阳能电池背场铝浆对电池性能的影响,着重分析了浆料组分对硅铝合金层(P+)电性能的影响,并用光学显微镜表征了背场结构及形貌.结果表明:使用低熔点玻璃粉可以促进硅铝合金层形成;在粗细铝粉比例为2:1时,表面电导率与表面性能最佳;同时,通过加入惰性填料能降低硅片的曲翘度,达到使用要求,相应电池光电转化率为18....  相似文献   

16.
于磊  张建华  李怀祥 《广州化工》2014,(3):44-45,49
采用n型单晶硅经光电化学阳极刻蚀成多孔硅,然后用TiO2和硝酸银溶液修饰多孔硅表面,通过电流-电压关系,时间-电流密度关系等方法研究几种复合多孔硅电极的光电性能,发现用TiO2和金属膜修饰的多孔硅电极光电流敏感,启动电压低,亮暗电流比明显,表现了更好的电极稳定性。  相似文献   

17.
Mercaptopropionic acid (MPA), gold nanoparticles (Au-NPs) and cystamine (CA) modified gold bare electrodes have been applied in voltammetric sensors for simultaneous detection of epinephrine (EP), ascorbic (AA) and uric (UA) acids. Modification of the electrode surface by self-assembled layers (SAMs) improves the reactivity of a gold electrode for EP oxidation remarkably. A linear relationship between the epinephrine concentration and the current response is obtained in the range of 0.1–700 μM with the detection limit ≥0.042 μM for the electrodes modified at 2D template and in the range of 0.1–800 μM with the detection limit ≥0.040 μM for the electrodes modified at 3D template. The results have shown that the overlapping voltammetric response of epinephrine, ascorbic and uric acids is well resolved at modified electrodes. The modified SAMs electrodes show high selectivity, sensitivity, reproducibility and stability.  相似文献   

18.
ABSTRACT: High-efficient fibrous dye-sensitized solar cell with carbon nanotube (CNT) thin films as counter electrodes has been reported. The CNT films were fabricated by coating CNT paste or spraying CNT suspension solution on Ti wires. A fluorine tin oxide-coated CNT underlayer was used to improve the adherence of the CNT layer on Ti substrate for sprayed samples. The charge transfer catalytic behavior of fibrous CNT/Ti counter electrodes to the iodide/triiodide redox pair was carefully studied by electrochemical impedance and current-voltage measurement. The catalytic activity can be enhanced by increasing the amount of CNT loading on substrate. Both the efficiencies of fibrous dye-sensitized solar cells using paste coated and sprayed CNT films as counter electrodes are comparative to that using Pt wires, indicating the feasibility of CNT/Ti wires as fibrous counter electrode for superseding Pt wires.  相似文献   

19.
为实现煤炭资源化分级利用,对东北某热电厂循环流化床锅炉灰渣进行提铝研究。用硫酸在不同的反应条件下酸浸,以获得较高的铝浸出率和合适的酸浸条件,产品为富含硫酸铝的酸浸液和高硅提铝残渣。酸浸实验结果表明,较为合适的酸浸条件为:5mol/L的硫酸、105~110℃的酸浸温度、2h的反应时间和1:3的固液比,此时铝浸出率为91.5%,提铝残渣中SiO2含量高达87.6%。X射线衍射分析(XRD)和扫描电镜(SEM)分析表明,原始煤灰渣中的铝元素主要以非晶态的化合物形式存在,而非晶态物质具有较高的化学反应活性,促成了较高的铝浸出率。因此,这种循环流化床锅炉的灰渣酸浸提铝提硅较为合适。  相似文献   

20.
The manufacturing and electrochemical characterisation of an array of 20 boron doped nanocrystalline diamond (BNCD) microband electrodes for use in a poly(dimethylsiloxane) (PDMS) based microfluidic system are described. The electrodes were fabricated by plasma etching of a silicon oxide- and BNCD thin film coated silicon wafer and the resulting surface structured silicon wafer was subsequently bonded to the PDMS so that the BNCD microband electrodes were located within the PDMS microchannel. The electrochemical performance of the BNCD electrodes was studied and the electrodes were found to exhibit significantly better stability than previously employed gold microband arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号