首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of CuO-doped activated carbons (CDACs) were prepared by chemical deposition. The electrochemical behavior of CDACs was investigated in electrochemical capacitors based on ionic liquid 1-ethyl-3-methylimidazolium thiocyanate ([EMIm]SCN) as electrolyte. The results indicated that a diffusion-controlling, reversible redox reaction of CuO particles happened in ionic liquid and porous carbon. When the amount of CuO-doped activated carbon with a specific surface area of 2460 m2 g−1 reached 2%, the single electrode average specific capacitance can reach the maximal value of 210 F g−1, about 20% higher than the one used pure activated carbon as electrode material.  相似文献   

2.
Nano-thin polypyrrole (PPy) layers with thickness from ∼5 nm to several 10s nm were deposited on vapor grown carbon fibers (VGCF) by an in situ chemical polymerization. Using different concentrations of the pyrrole could control the thicknesses of deposited PPy layers. Surface morphology and thickness of the deposited PPy layers were confirmed by means of scanning electron microscopy and scanning transmission emission microscopy. Pseudo-capacitive behavior of the deposited PPy layers on VGCF investigated by means of cyclic voltammetry. Then, the PPy/VGCF composites were mixed with activated carbons (AC) at various mixing ratios. For the PPy/VGCF/AC composite electrodes, characteristics of specific capacitance and power capability were examined by half-cell tests. As results of this study, it was investigated that nano-thin PPy layer below ∼10 nm deposited on VGCF had high pseudo-capacitance and fast reversibility. Its specific capacitance per averaged weight of active material (PPy) was obtained as ∼588 F g−1 at 30 mV s−1 and maintained as ∼550 F g−1 at 200 mV s−1 of scan rate. Also, from the mixing 60 wt.% of the PPy/VGCF with 25 wt.% of AC, the PPy/VGCF/AC composite electrode exhibited higher power capability maintaining the specific capacitance per active materials of PPy and AC as ∼300 F g−1 at 200 mV s−1 in 6 M KOH.  相似文献   

3.
The present paper shows that the performance of an inexpensive activated carbon used in electrochemical capacitors can be significantly enhanced by a simple treatment with KOH at 850 °C. The changes in the specific surface area, as well as in the surface chemistry, lead to high capacitance values, which provide a noticeable energy density.The KOH-treatment of a commercial activated carbon leads to highly pure carbons with effective surface areas in the range of 1300-1500 m2 g−1 and gravimetric capacitances as high as three times that of the raw carbon.For re-activated carbons, one obtains at low current density (50 mA g−1) values of 200 F g−1 in aqueous electrolytes (1M H2SO4 and 6M KOH) and around 150 F g−1 in 1M (C2H5)4NBF4 in acetonitrile. Furthermore, the resulting carbons present an enhanced and stable performance for high charge/discharge load in organic and aqueous media.This work confirms the possibilities offered by immersion calorimetry on its own for the prediction of the specific capacitance of carbons in (C2H5)4NBF4/acetonitrile. On the other hand, it also shows the limitations of this technique to assess, with a good accuracy, the suitability of a carbon to be used as capacitor electrodes operating in aqueous electrolytes (H2SO4 and KOH).  相似文献   

4.
V. Ruiz 《Electrochimica acta》2010,55(25):7495-7500
Polyfurfuryl alcohol (PFA) derived activated carbons were prepared by the acid catalysed polymerization of furfuryl alcohol, followed by potassium hydroxide activation. Activated carbons with apparent BET surface areas ranging from 1070 to 2600 m2 g−1, and corresponding average micropore sizes between 0.6 and 1.6 nm were obtained. The porosity of these carbons can be carefully controlled during activation and their performance as electrode materials in electric double layer capacitors (EDLCs) in a non-aqueous electrolyte (1 M Et4NBF4/ACN) is investigated.Carbon materials with a low average pore size (<∼0.6 nm) exhibited electrolyte accessibility issues and an associated decrease in capacitance at high charging rates. PFA carbons with larger average pore sizes exhibited greatly improved performance, with specific electrode capacitances of 150 F g−1 at an operating voltage window of 0-2.5 V; which corresponds to 32 Wh kg−1 and 38 kW kg−1 on an active material basis. These carbons also displayed an outstanding performance at high current densities delivering up to 100 F g−1 at current densities as high as 250 A g−1. The exceptionally high capacitance and power of this electrode material is attributed to its good electronic conductivity and a highly effective combination of micro- and fine mesoporosity.  相似文献   

5.
Bicontinuous ordered mesoporous carbons (OMCs), fabricated from a KIT-6 template using aluminosilicate as catalyst and furfuryl alcohol as carbon source, were successfully prepared and studied as electrodes in supercapacitors. Their structures were characterized by transmission electron microscopy (TEM), small-angle X-ray diffraction (SAXD) and N2 cryosorption methods. Using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), the capacitive performance of the OMCs was found to be strongly dependent on the mesostructure. Specific capacitance value greater than 130 F g−1 at 20 mV s−1 were obtained from an OMC that featured high surface area with the existence of additional large pores to enhance the specific capacitance at high discharge rate. For the OMC with the best performance, we found that a power density as high as 4.5 kW kg−1 at an energy density of 6.1 Wh kg−1 can be delivered when the discharge current density is 20 A g−1 and can also be continuously charged and discharged with little variation in capacitance after 2500 cycles. These results indicate that this OMC with optimized structure has potential to be used as a power component in electric vehicles.  相似文献   

6.
Porous carbons with high-volumetric capacitance in aqueous electric double layer capacitors (EDLCs) were simply prepared by poly(vinylidene chloride) (PVDC) carbonization at high temperature without activation or any other additional processes. The PVDC-derived carbon is microporous with Brunauer-Emmett-Teller (BET) surface area about 1200 m2 g−1. As it possesses not only high-gravimetric capacitance (262 F g−1) but also high-electrode density (0.815 g cm−3), the PVDC-derived carbon present an outstanding high-volumetric capacitance of 214 F cm−3, twice over of the commercial carbon Maxsorb-3 with a high-surface area of 3200 m2 g−1. The PVDC-derived carbon also exhibit good rate performance, indicating that it is a promising electrode material for EDLCs.  相似文献   

7.
Juan Hu  Hongliang Guo 《Carbon》2010,48(12):3599-152
Several kinds of porous carbons were easily prepared by using metal-organic framework as both template and carbon precursor. Nanocasting is chosen to adjust the textures and structures with phenolic resin or carbon tetrachloride and ethylenediamine as the additional carbon sources. The carbon materials were further activated by potassium hydroxide (KOH). The electrochemical capacitance behaviors of these carbon materials were investigated in both aqueous and organic electrolytes. Energy densities of 9.4 W h kg−1 in 6 M KOH and 31.2 W h kg−1 in 1.5 M tetraethylammonium tetrafluoroborate acetonitrile solution can be obtained for one of the prepared porous carbon materials (MAC-A) with the surface area of 2222 m2 g−1 and the total pore volume of 1.14 cm3 g−1. Due to its high packing density of 0.93 g cm−3, the related volumetric specific energy densities of 8.8 and 29.0 W h L−1 can be got.  相似文献   

8.
Huanlei Wang 《Carbon》2009,47(3):820-828
A nanoporous carbide-derived carbon (CDC) was synthesized by chlorination of boron carbide powder using hydrogen chloride as the reactive gas. The structure and texture of the CDCs were characterized by X-ray diffraction, high-resolution transmission electron microcopy and nitrogen adsorption at 77 K, which confirmed a structural and textural dependence on chlorination temperature and reaction time. The CDC technique to produce porous carbons is very attractive because it can obtain carbons with desired structure and porosity and the CDCs produced here show great potential for energy-related applications. Used as hydrogen storage materials, the hydrogen uptake capacity could reach 1.06 wt.% at 77K and 1 bar. When tested as electrodes for supercapacitors, specific surface capacitance value up to 0.403 F m−2 and a capacitance retention ratio up to 86% (at a voltage scan rate of 50 mV s−1) could be obtained.  相似文献   

9.
Five nanoporous carbons (NPCs) were prepared by polymerizing and then carbonizing carbon precursor of furfuryl alcohol accommodated in a porous metal-organic framework (MOF-5, [Zn4O(bdc)3], bdc = 1,4-benzenedicarboxylate) template. The Brunauer-Emmett-Teller (BET) surface areas for five NPC samples obtained by carbonizing at the temperatures from 530 to 1000 °C fall into the range from 1140 to 3040 m2 g−1 and the dependence of BET surface areas on carbonization temperatures shows a “V” shape. All the five NPC samples have a pore size distribution centered at about 3.9 nm. As electrode materials for supercapacitor, the NPC samples obtained at the temperatures higher than 600 °C display the ideal capacitor behaviors and give rise to almost constant specific capacitance (above 100 F g−1 at 5 mV s−1) at various sweep rates, which is associated with their mesoporous characteristics. However, the NPC sample with the highest BET surface area (3040 m2 g−1) obtained by carbonizing at 530 °C gives a unusually low capacitance (12 F g−1 at 5 mV s−1), which may be attributed to the poor conductivity of the carbon material due to the low carbonization temperature.  相似文献   

10.
This study shows that carbide-derived carbons (CDCs) with average pore size distributions around 0.9-1 nm and effective surface areas of 1300-1400 m2 g−1 provide electrochemical double-layer capacitors with high performances in both aqueous (2M H2SO4) and aprotic (1M (C2H5)4NBF4 in acetonitrile) electrolytes.In the acidic electrolytic solution, the gravimetric capacitance at low current density (1 mA cm−2) can exceed 200 F g−1, whereas the volumetric capacitance reaches 90 F cm−3. In the aprotic electrolyte they reach 150 F g−1 and 60 F cm−3.A detailed comparison of the capacitive behaviour of CDCs at high current density (up to 100 mA cm−2) with other microporous and mesoporous carbons indicates better rate capabilities for the present materials in both electrolytes. This is due to the high surface area, the accessible porosity and the relatively low oxygen content.It also appears that the surface-related capacitances of the present CDCs in the aprotic electrolyte are in line with other carbons and show no anomalous behaviour.  相似文献   

11.
A series of coal-based activated carbons representing a wide range of mesopore content, from 16.7 to 86.9%, were investigated as an electrode in electric double layer capacitors (EDLCs) in 1 mol l−1 H2SO4 and 6 mol l−1 KOH electrolytic solutions. The activated carbons (ACs) used in this study were produced from chemically modified lignite, subbituminous and bituminous coals by carbonization and subsequent activation with steam. The BET surface area of ACs studied ranged from 340 to 1270 m2 g−1. The performance of ACs as EDLC electrodes was characterized using voltammetry, galvanostatic charge/discharge and impedance spectroscopy measurements. For the carbons with surface area up to 1000 m2 g−1, the higher BET surface area the higher specific capacitance (F g−1) for both electrolytes. The surface capacitance (μF cm−2) increases also with the mesopore content. The optimum range of mesopore content in terms of the use of ACs studied for EDLCs was found to be between 20 and 50%. A maximum capacitance exceeding 160 F g−1 and a relatively high surface capacitance about 16 μF cm−2 measured in H2SO4 solution were achieved for the AC prepared from a sulfonated subbituminous coal. This study shows that the ACs produced from coals exhibit a better performance as an electrode material of EDLC in H2SO4 than in KOH electrolytic solutions. For KOH, the capacitance per unit mesopore surface is slightly lower than that referred to unit micropore surface (9.1 versus 10.1 μF cm−2). However, in the case of H2SO4 the former capacitance is double and even higher compared with the latter (23.1 versus 9.8 μF cm−2). On the other hand, the capacitance per micropore surface area is the same in both electrolytes used, about 10.0 μF cm−2.  相似文献   

12.
Huanlei Wang  Juan Hu  Zhi Chen 《Carbon》2009,47(9):2259-152
Nanoporous carbon materials were synthesized by a two-step casting process using zeolite 13X as template. The nanoporous structures were characterized by X-ray diffraction, high resolution transmission electron microcopy and nitrogen sorption at 77 K, and the results show that pore filling in the zeolite channels could play an important role in the replication of zeolite-like structural order. Better pore filling led to a more ordered structure as well as higher surface area and pore volume. Further potassium hydroxide (KOH) activation improved the microporous texture to the carbon framework and resulted in higher surface area and pore volume. A large hydrogen uptake capacity of 6.30 wt.% has been achieved at 77 K and 20 bar. Besides, a high gravimetric capacitance of up to 160 F g−1 and an energy density of 30 W h kg−1 have been obtained when tested as an electrode for supercapacitors. The high performance in cryogenic hydrogen storage and electrochemical capacitance were closely correlated with the pore structures of the carbon materials.  相似文献   

13.
Activated carbon fiber cloth (ACFC) electrodes with high double layer capacitance and good rate capability were prepared from polyacrylonitrile (PAN) fabrics by optimizing the carbonization temperature prior to CO2 activation. The carbonization temperature has a marked effect on both the pore structure and the electrochemical performances of the ACFCs. Moderate carbonization at 600 °C results in higher specific surface area and larger pore size, and hence higher capacitance and better rate capability. The specific capacitance of the ACFCs in 6 mol L−1 KOH aqueous solution can be as high as 208 F g−1. It remains 129 F g−1 as the current density increases to 10 000 mA g−1.  相似文献   

14.
Performance of templated mesoporous carbons in supercapacitors   总被引:1,自引:0,他引:1  
By analogy with other types of carbons, templated mesoporous carbons (TMCs) can be used as supercapacitors. Their contribution arises essentially from the double layer capacity formed on their surface, which corresponds to 0.14 F m−2 in aqueous electrolytes such as H2SO4 and KOH and 0.06 F m−2 for the aprotic medium (C2H5)4NBF4 in CH3CN. In the case of a series of 27 TMCs, it appears that the effective surface area determined by independent techniques can be as high as 1500-1600 m2 g−1, and therefore exceeds the value obtained for many activated carbons (typically 900-1300 m2 g−1). On the other hand, the relatively low amount of surface oxygen in the present TMCs, as opposed to activated carbons, reduces the contribution of pseudo-capacitance effects and limits the gravimetric capacitance to 200-220 F g−1 for aqueous electrolytes. In the case of non-aqueous electrolyte, it rarely exceeds 100 F g−1.It is also shown that the average mesopore diameter of these TMCs does not improve significantly the ionic mobility compared with typical activated carbons of pore-widths above 1.0-1.3 nm.This study suggests that activated carbons remain the more promising candidates for supercapacitors with high performances.  相似文献   

15.
Activated carbons were prepared by the pyrolysis of artichoke leaves impregnated with phosphoric acid at 500 °C for different impregnation ratios: 100, 200, 300 wt.%. Materials were characterized for their surface chemistry by elemental analysis, “Boehm titrations”, point of zero charge measurements, infrared spectroscopy, as well as for their porous and morphological structure by Scanning Electron Microscopy and nitrogen adsorption at 77 K. The impregnation ratio was found to govern the porous structure of the prepared activated carbons. Low impregnation ratios (~ 100 wt.%) led to essentially microporous and acidic activated carbons whereas high impregnation ratios (> 100 wt.%) gave essentially microporous-mesoporous carbons with specific surface areas as high as 2038 m2·g− 1, pore volume as large as 2.47 cm3·g− 1, and a slightly acidic surface. The prepared activated carbons were studied for their adsorption isotherms of Methylene Blue at pH = 3 and pH = 9. The supermicroporous structure of the material produced at 200 wt.% H3PO4 ratio was found to be appropriate for an efficient adsorption of this dye controlled by dispersive and electrostatic interactions depending on the amount of oxygen at the surface.  相似文献   

16.
Modified activated carbon fibers (ACFs) were used as the electrodes of an electric double-layer capacitor and showed an enhanced capacitance effect after a RF-plasma treatment. The capacitance and the surface functional groups of the ACFs were studied. For the plasma-treated ACFs having a specific surface area of 1500 m2 g−1, the capacitance increased by 28% compared to the untreated sample and the highest electric capacitance value of 142 F g−1 was achieved with an oxygen feed concentration of 10 vol.%. The Brunauer-Emmett-Teller (BET) surface area was 2103 m2 g−1, which was 34% higher than that of the untreated sample. The pore volume was similarly increased to 483.1 cm3 g−1 STP, and from the pore distribution plot, quantities of mesopores of 10 nm or less and micropores also increased. However, in order to enhance the capacitance, the quinone functional group had a significant influence in addition to the BET surface area. The correlation between the capacitance and the number of quinone functional groups was confirmed because quinone is an electron acceptor.  相似文献   

17.
J. Leis  M. Arulepp  A. Perkson 《Carbon》2010,48(14):4001-4732
Carbide-derived carbon (CDC) was synthesised from molybdenum carbide by extracting Mo atoms in a high-temperature chlorine atmosphere. A systematic study of the influence of pore size on the electrical double layer (EDL) performance was carried out with carbons synthesised in the temperature interval of 500-900 °C. Strong effect of chlorination conditions on the pore-size distribution was noticed that gives wide possibilities to vary the pore structure of Mo2C derived carbons. An average pore size of carbons varied between 1 nm and 2 nm depending on chlorination temperature. The relationships were established between the pore-size distribution and the electrochemical performance of micro/mesoporous carbons. The EDL characteristics of carbon materials in a propylene carbonate solution of triethylmethylammonium tetrafluoroborate were obtained using the cyclic voltammetry at ΔE of 3.8 V and the constant current methods in a 3-electrode test cell. A novel test method was developed to demonstrate the power characteristics of the electrode materials. The results of this study affirmed the great potential of Mo2C derived carbons, whose EDL capacitance reaches ∼65 F cm−3 and 132 F g−1 and the 20-s discharge power density is 2.1 W cm−3.  相似文献   

18.
Nitrogen-containing carbon nanotubes (CNTs) with open end and low specific surface area were prepared via the carbonization of polyaniline (PANI) nanotubes synthesized by a rapidly mixed reaction. On the basis of analyzing the morphologies and structures of the original and carbonized PANI nanotubes, the electrochemical properties of PANI-based CNTs obtained at different temperatures as electrode materials for supercapacitors using 30 wt.% aqueous solution of KOH as electrolyte were investigated by galvanostatic charge/discharge and cyclic voltammetry. It was found that the carbonized PANI nanotubes at 700 °C exhibit high specific capacitance of 163 F g−1 at a current density of 0.1 A g−1 and excellent rate capability in KOH solution. Using X-ray photoelectron spectroscopy measurement the nitrogen state and content in PANI-CNTs were analysed, which could play important roles for the enhancement of electrochemical performance. When the appropriate content of nitrogen is present, the presence of pyrrole or pyridone and quaternary nitrogen is beneficial for the improvement of electron mobility and the wettability of electrode.  相似文献   

19.
By modification of surfaces of multi-walled carbon nanotubes with ultra-thin monolayer-type films of phosphododecamolybdic acid, H3PMo12O40, an electrode material with improved capacitance properties is produced. It is apparent from three distinct test experiments (based on cyclic voltammetry, galavanostatic charging-discharging and AC impedance) that capacitors utilizing H3PMo12O40-modified carbon nanotubes are characterized by specific capacitances and energy densities on the levels of 40 F g−1 and 1.3 Wh kg−1, whereas the respective values for the systems built from bare carbon nanotubes are lower, 22 F g−1 and 0.7 Wh kg−1. It is reasonable to expect that fast and reversible multi-electron transfers of the Keggin-type H3PMo12O40 account for the pseudocapacitance effect and significantly contribute to the observed overall capacitance.  相似文献   

20.
The activated carbon beads (ACB) are prepared by a new preparation method, which is proposed by mixing the coal tar pitch and fumed silica powder at a certain weight ratio and activation by KOH at different weight ratios and different temperatures. The BET surface area, pore volume and average pore size are obtained based on the nitrogen adsorption isotherms at 77 K by using ASAP 2010 apparatus. The results show that our samples have much high specific surface area (SSA) of 3537 m2 g−1and high pore volume value of 3.05 cm3 g−1. The percentage of mesopore volume increases with the weight ratio of KOH/ACB ranging from 4% to 72%. The electrochemical double layer capacitors (EDLCs) are assembled with resultant carbon electrode and electrolyte of 1 mol L−1 Et4NBF4/PC. The specific capacitance of the ACB sample could be as high as 191.7 F g−1 by constant current charge/discharge technique, indicating that the ACB presents good characteristics prepared by the method proposed in this work. The investigation of influence of carbon porosity structure on capacitance indicates that the SSA plays an important role on the capacitance and all the pore sizes of less than 1 nm, from 1 to 2 nm and larger than 2 nm contribute to the capacitance. Mesopore structure is beneficial for the performance at high current density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号