首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A perfluorosulfonic acid (PFSA) polymer with pendant side chain -O(CF2)4SO3H was doped with the heteropoly acids (HPAs), H3PW12O40 and H4SiW12O40. Infrared spectroscopy revealed a strong interaction between the HPA and the PFSA ionomer. Modes associated with the peripheral bonds of the HPA were shifted to lower wave numbers when doped into PFSA membranes. Small-angle X-ray scattering (SAXS) measurements showed the presence of large crystallites of HPA in the membrane with d spacings of ca. 10 Å, close to the lattice spacing observed in bulk HPA crystals. Under wet conditions the HPA was more dispersed and constrained the size of the sulfonic acid clusters to 20 Å at a 5 wt% HPA doping level, the same as in the vacuum treated ionomer samples. Under conditions of minimum hydration the HPA decreased the Ea for the self-diffusion of water from 27 to 15 kJ mol−1. The reverse trend was seen under 100% RH conditions. Proton conductivity measurements showed improved proton conductivity of the HPA doped PFSAs at a constant dew point of 80 °C for all temperatures up to 120 °C and at all relative hummidities up to 80%. The activation energy for proton conduction generally was lower than for the undoped materials at RH ≤80%. Significantly the Ea was 1/2 that of the undoped material at RHs of 40 and 60%. A practical proton conductivity of 113 mS cm−1 was observed at 100 °C and 80% RH.  相似文献   

2.
Dieter Heymann 《Carbon》2005,43(11):2235-2242
The mean lifetimes of polyyne C8H2 in hexane were determined at 50, 60, 80, and 100 °C and in methanol at 60 °C. The reactions are second order at all temperatures: ln k2 = 20.5 ± 1.5-10303 ± 520T−1 and the corresponding activation energy is 85.7 ± 6.3 kJ mol−1 (7164 cm−1). Extrapolation suggests that solutions at 1 mM concentration are significantly unstable at room temperature. Quantum chemical calculations show that polyynes CmH2 + CnH2 (m + n = 16) could be products, but these were not detected. Alternatively, C16H2 isomers could form. IR spectra of the solid residues from hexane and methanol solutions were obtained.  相似文献   

3.
This work is devoted to the kinetic study of densification and grain growth of LaPO4 ceramics. By sintering at a temperature close to 1500 °C, densification rate can reach up to 98% of the theoretical density and grain growth can be controlled in the range 0.6–4 μm. Isothermal shrinkage measurements carried out by dilatometry revealed that densification occurs by lattice diffusion from the grain boundary to the neck. The activation energy for densification (ED) is evaluated as 480 ± 4 kJ mol−1. Grain growth is governed by lattice diffusion controlled pore drag and the activation energy (EG) is found to be 603 ± 2 kJ mol−1. The pore mobility is so low that grain growth only occurs for almost fully dense materials.  相似文献   

4.
Electropolishing of NiTi shape memory alloys in methanolic H2SO4   总被引:2,自引:0,他引:2  
The electropolishing of NiTi shape memory alloys was surveyed electrochemically. Anodic polarization of NiTi up to 8 V was performed in various aqueous and methanolic H2SO4 solutions. The passivity could be overcome in methanolic solutions with 0.1moldm−3≤CH2SO4≤7moldm−3. The dissolution kinetics was studied in dependence of the polarization potential, the H2SO4-concentration, the water concentration and the temperature. For lower concentrations of sulfuric acids (CH2SO4≤0.3moldm−3) electropolishing conditions were not observed for potentials up to 8 V. The dissolution remained under Ohmic control. In the concentration range from 1 to 7 mol dm−3 a potential independent limiting current was registered depending linearly on the logarithm of concentration. The best results were obtained with a 3 mol dm−3 methanolic sulfuric acid at 263 K which yielded an electropolishing current of 500 A m−2 at a potential of 8 V. Surface roughness as well as current efficiency showed an optimum under these conditions.  相似文献   

5.
Hydrogen evolution from 0.5 M H2SO4 on Ti electrodes coated with a RuxTi1−xO2 (x=0.04-0.5) layer has been studied by potentiostatic polarisation, cyclic voltammetry and ac-impedance spectroscopy. The results indicate that after a certain activation period the performance of such an electrode coating is comparable to platinum. The addition of small amounts of sodium molybdate increased the capacitance of the electrode and a reduction of the performance was observed. Increasing the temperature of the pure electrolyte from 20 to 75 °C caused an increase in the rate of the hydrogen evolution and in addition an increase of the electrode capacitance. The electrodes have been found to be rather tolerant to chloride and Fe2+ ions, and could hence be promising candidates as catalyst materials for solid polymer water electrolysis systems. From steady state measurements the Tafel slopes were found to change from −105 mV/decade for pure titanium to about −40 mV/decade for the (RuTi)O2 coated electrodes. The exchange current densities were calculated from the steady state curves, as well as from impedance data, to be about 10−4 A cm−2 after activation.  相似文献   

6.
The effect of the concentration of four types of inhibiting heterocyclic molecules on the corrosion susceptibility of steel pipeline samples grade API 5L X52 in 1 M H2SO4 was studied by electrochemical testing and SEM analysis. The compounds used were: 2-mercaptobenzoimidazole (MBI), 5-mercapto-1-tetrazoleacetic sodium salt (MTAc), 1-hydroxybenzotriazole (HBT) and benzimidazole (BIA). The results showed that there was an optimum inhibitor concentration at which the maximum inhibiting efficiency, IE, was reached. Further, the MBI displayed the best inhibiting characteristics for this system, with a maximum IE of approximately 99% having added only 25 ppm. It is shown that this compound can affect both the anodic and cathodic processes, thus it can be classified as a mixed-type inhibitor for API 5L X52 steel corrosion in sulphuric acid. Moreover, this compound follows an adsorption mechanism, which can be adequately described by the Langmuir isotherm with an adsorption standard free energy difference (ΔG°) of −28.5 kJ mol−1.  相似文献   

7.
Micro-spherical particle of MnCO3 has been successfully synthesized in CTAB-C8H18-C4H9OH-H2O micro-emulsion system. Mn2O3 decomposed from the MnCO3 is mixed with Li2CO3 and sintered at 800 °C for 12 h, and the pure spinel LiMn2O4 in sub-micrometer size is obtained. The LiMn2O4 has initial discharge specific capacity of 124 mAh g−1 at discharge current of 120 mA g−1 between 3 and 4.2 V, and retains 118 mAh g−1 after 110 cycles. High-rate capability test shows that even at a current density of 16 C, capacity about 103 mAh g−1 is delivered, whose power is 57 times of that at 0.2 C. The capacity loss rate at 55 °C is 0.27% per cycle.  相似文献   

8.
Free standing PEDOT [poly(3,4-ethylenedioxythiophene)] films (with surface conductivities of 200-400 S cm−1) were generated in tetrabutylammonium trifluromethanesulfonate (TBACF3SO3) electrolytes by potentiostatic (EP 1.05 V vs. Ag wire) electropolymerisation in propylene carbonate (at −27 °C) and methyl benzoate (at −4 °C). Films obtained in the TBACF3SO3 electrolytes showed a length increase of 2-3% during scans to negative potentials under isotonic (constant load 1.35 MPa) and stress of 0.3 MPa under isometric (constant length) conditions. Cation movement occurred due to immobilisation of CF3SO3 anions during electropolymerisation. The system showed good stability and low creep during square wave electrochemical cycling in the potential range from 0.0 to 1.0 V. The surface morphology (SEM) of the PEDOT films showed that the polymer structure is dependent upon the solvent used during the polymerisation process.  相似文献   

9.
M. Reffass 《Electrochimica acta》2007,52(27):7599-7606
Pitting corrosion of carbon steel electrodes in 0.1 mol L−1 NaHCO3 + 0.02 mol L−1 NaCl solutions was induced by anodic polarisation. The evolution of the breakdown potential Eb with NO2 concentration was investigated by linear voltammetry. Eb increased from −15 ± 5 mV/SCE for [NO2] = 0 up to 400 ± 50 mV/SCE for [NO2] = 0.1 mol L−1. During anodic polarisation at potentials comprised between Eb([NO2] = 0) and Eb([NO2] ≠ 0), the behaviour of the whole electrode surface, followed by chronoamperometry, was compared to the behaviour of one single pit, followed via scanning vibrating electrode technique (SVET). Addition of a NaNO2 solution after the beginning of the polarisation led to a rapid repassivation of pre-existing well-grown pits. In situ micro-Raman spectroscopy was then used to identify the corrosion products forming inside the pits. The first species to be detected in the presence of NO2 were mainly dissolved Fe(III) species, more likely [FeIII(H2O)6]3+ complexes. Iron(II) carbonate FeCO3, siderite, and carbonated green rust GR(CO32−) were also detected in the active pits, as in the absence of nitrite. But they were accompanied by maghemite γ-Fe2O3, a phase structurally similar to the passive film, that forms from the Fe(III) complexes. The Raman analyses then correlate with the SVET observations and confirm that the main effect of nitrite ions is to oxidize iron(II) into iron(III). The passive film would then form from the Fe(III) species still bound to the steel surface.  相似文献   

10.
Magnesium silicon nitride MgSiN2 was prepared by direct nitridation of Si/Mg2Si/Mg/Si3N4 powder compact in a temperature range 1350-1420 °C. The thermal stability examination showed that MgSiN2 is stable up to 1400 °C at 0.1 MPa N2 pressure. The activation energy of decomposition of MgSiN2 calculated from the temperature dependence of mass loss in the range of 1400-1650 °C is ΔH = 501 kJ mol−1. The time dependence and nitrogen pressure dependence of MgSiN2 decomposition was also investigated at constant temperature. MgSiN2 is stable at 1560 °C in 0.6 MPa nitrogen atmosphere. Using these experimental data together with the heat capacity published in a literature the Gibbs energy of formation of MgSiN2 was calculated in a temperature range 25-2200 °C.  相似文献   

11.
The LiZnxMn2−xO4 (x = 0.00-0.15) cathode materials for rechargeable lithium-ion batteries were synthesized by simple sol-gel technique using aqueous solutions of metal nitrates and succinic acid as the chelating agent. The gel precursors of metal succinates were dried in vacuum oven for 10 h at 120 °C. After drying, the gel precursors were ground and heated at 900 °C. The structural characterization was carried out by X-ray powder diffraction and X-ray photoelectron spectroscopy to identify the valance state of Mn in the synthesized materials. The sample exhibited a well-defined spinel structure and the lattice parameter was linearly increased with increasing the Zn contents in LiZnxMn2−xO4. Surface morphology and particle size of the synthesized materials were determined by scanning electron microscopy and transmission electron microscopy, respectively. Electrochemical properties were characterized for the assembled Li/LiZnxMn2−xO4 coin type cells using galvanostatic charge/discharge studies at 0.5 C rate and cyclic voltammetry technique in the potential range between 2.75 and 4.5 V at a scan rate of 0.1 mV s−1. Among them Zn doped spinel LiZn0.10Mn1.90O4 has improved the structural stability, high reversible capacity and excellent electrochemical performance of rechargeable lithium batteries.  相似文献   

12.
Members of the solid-solution series Ce1−xSrxPO4−δ (x = 0, 0.01, 0.02) with mixed protonic and electronic transport have been synthesized by a nitrate-decomposition method followed by sintering at 1450 °C. Impedance spectroscopy is employed to estimate the bulk electrical conductivity in wet (∼0.03 atm) and dry atmospheres of O2 and 10%H2:90%N2. Conductivity increases with dopant concentration (x), oxygen partial pressure (pO2) and water vapour partial pressure (pH2O) reaching ∼3.5 × 10−3 S cm−1 at 600 °C for x = 0.02 in wet O2. Activation energies (Ea) for the bulk conductivity of Ce0.98Sr0.02PO4−δ below 650 °C are 0.44 and 0.78 eV for wet oxidising and wet reducing conditions, respectively. A moderate but positive pO2+n power-law dependence (n < 1/10) of conductivity is exhibited in the pO2 range 10−2.5 to 10−1 atm, consistent with mixed ionic and p-type electronic transport. Thermogravimetric analysis indicates that the Sr-doped materials are stable in a CO2 atmosphere in the temperature range 25–1200 °C.  相似文献   

13.
It was recently shown that an abnormally fast transport of CO molecules takes place at the electrode/electrolyte interface of Pt and PtRu electrodes in H2SO4 and HClO4 solutions. In the present paper, this phenomenon is tested for other gases, such as hydrogen and oxygen. The fast transport is also observed at the solid/electrolyte solution interface of other electrode materials and at the glass/electrolyte interface. Several experiments are shown, demonstrating that mass transfer takes place at a velocity, which is more than one order of magnitude higher than expected for usual diffusion conditions.Assuming radial mass transfer at the interface of a Pt disc, the activation energy, Ea = 23 kJ mol−1, was calculated from Arrhenius plots. The same value was measured in H2SO4 and HClO4 as supporting electrolytes. The mass transport parameter, Y, at 298 K was 4.8 × 10−3 cm2 s−1 and 2.9 × 10−3 cm2 s−1 in 0.5 M H2SO4 and 1 M HClO4 respectively.  相似文献   

14.
Mn1.56Co0.96Ni0.48O4 (MCN) free-standing ultrathin chips are successfully fabricated by using screen printing. The structure, electrical and IR absorption properties have been investigated as a function of the sintering temperature. The X-ray diffraction, X-ray photoelectron spectroscopy and field emission scanning electron microscope analyses show remarkable improvements in crystallinity, stoichiometry and relative density for MCN chips. From the electrical experimental results, it is found that the resistivity of the chip samples sharply decreases from 2660 to 21.9 Ω cm. Such feature is attributed to the decrease in the grain boundary resistance and the increase in Mn3+/Mn4+ ratio with increasing sintering temperature. Furthermore, Fourier transform infrared spectra show that the absorption bands ν1 (around 1160 cm−1) at 1100 °C almost disappears while the others still remain. It is ascribed to the increase in the density of samples. The intensities of symmetry bands ν2 (850 cm−1) are also found to be consistent with an increase in ratio of Mn3+ to Mn4+ ions with increasing sintering temperature.  相似文献   

15.
A simple and effective method, ethylene glycol-assisted co-precipitation method, has been employed to synthesize LiNi0.5Mn1.5O4 spinel. As a chelating agent, ethylene glycol can realize the homogenous distributions of metal ions at the atomic scale and prevent the growth of LiNi0.5Mn1.5O4 particles. XRD reveals that the prepared material is a pure-phase cubic spinel structure (Fd3m) without any impurities. SEM images show that it has an agglomerate structure with the primary particle size of less than 100 nm. Electrochemical tests demonstrate that the as-prepared LiNi0.5Mn1.5O4 possesses high capacity and excellent rate capability. At 0.1 C rate, it shows a discharge capacity of 137 mAh g−1 which is about 93.4% of the theoretical capacity (146.7 mAh g−1). At the high rate of 5 C, it can still deliver a discharge capacity of 117 mAh g−1 with excellent capacity retention rate of more than 95% after 50 cycles. These results show that the as-prepared LiNi0.5Mn1.5O4 is a promising cathode material for high power Li-ion batteries.  相似文献   

16.
LiAlxMn2−xO4 samples (x = 0, 0.02, 0.05, 0.08) were synthesized by a polymer-pyrolysis method. The structure and morphology of the LiAlxMn2−xO4 samples calcined at 800 °C for 6 h were investigated by powder X-ray diffraction and scanning electron microscopy. The results show that all samples have high crystallinity, regular octahedral morphology and uniform particle size of 100-300 nm. The electrochemical performances were tested by galvanostatic charge-discharge and cyclic voltammetry. The results demonstrate that the Al-doped LiMn2O4 can be very well cycled at an elevated temperature of 55 °C without severe capacity degradation. In particular, the LiAl0.08Mn1.92O4 sample demonstrates excellent capacity retention of 99.3% after 50 cycles at 55 °C, confirming the greatly enhanced electrochemical stability of LiMn2O4 by a small quantity of Al-doping.  相似文献   

17.
We report on the use of the polyoxometalate acids of the series [PMo(12 − n)VnO40](3 + n)− (n = 0-3) as electrocatalysts in both the anode and the cathode of polymer-electrolyte membrane (PEM) fuel cells. The heteropolyacids were incorporated as catalysts in a commercial gas diffusion electrode based on Vulcan XC-72 carbon which strongly adsorbed a low loading of the catalyst, ca. 0.1 mg/cm2. The moderate activity observed was independent of the number of vanadium atoms in the polyoxometalate. In the anode the electrochemistry is dominated by the V3+/4+ couple. With a platinum reference wire in contact with the anode, polarization curves are obtained withVOC of 650 mV and current densities of 10 mA cm−2 at 100 mV at 80 °C. These catalysts showed an order of magnitude more activity on the cathode after moderate heat treatment than on the anode,VOC = 750 mV, current densities of 140 mA cm−2 at 100 mV. The temperature dependence of the catalysts was also investigated and showed increasing current densities could be achieved on the anode up to 139 °C and the cathode to 100 °C showing the potential for these materials to work at elevated temperatures.  相似文献   

18.
Some ternary ferrites with molecular formula, CoFe2−xCrxO4 (0≤x≤1.0) have been synthesized at 70 °C by a precipitation method and were transformed into the film form at the pretreated Ni support (1.5×1.0 cm2) using an oxide-slurry painting technique. The study showed that Cr-substitution from 0.2 to 1.0 mol increased the electrocatalytic activity of the oxide towards the oxygen evolution reaction (OER), the optimum improvement in apparent electrocatalytic activity being with 0.8 mol Cr. At E=600 mV versus Hg/HgO in 1 M KOH (25 °C), the apparent oxygen evolution current density (ja) with the catalyst, CoFe1.2Cr0.8O4, was ∼80 times greater than that observed with the base oxide (i.e. CoFe2O4). The OER on Cr-substituted oxides showed two Tafel slopes, one (b=42±1 mV per decade) at low overpotential and the other (b=66±6 mV per decade) at higher potential. The reaction order with respect to OH concentration was ∼1.3±0.1 for each electrocatalyst. The thermodynamic parameters for the OER, namely, standard apparent electrochemical enthalpy of activation (ΔH°el#), standard enthalpy of activation (ΔH°#) and standard entropy of activation (ΔS°#) have also been determined. It was observed that values of the ΔH°el# and ΔH°# decreased with Cr-substitution in the CoFe2O4 lattice; the decrement, however, being the greatest with 0.8 mol Cr. The ΔS°# values were largely negative varying between ∼−61 and −126 J deg−1 mol−1.  相似文献   

19.
X. Fang 《Electrochimica acta》2010,55(3):832-10227
Nano- and micro-sized LiNi0.5Mn1.5O4 particles are prepared via the thermal decomposition of a ternary eutectic Li-Ni-Mn acetate. Lithium acetate, nickel acetate and manganese acetate can form a ternary eutectic Li-Ni-Mn acetate below 80 °C. After further calcination, nano-sized LiNi0.5Mn1.5O4 particles can be obtained at an extremely low temperature (500 °C). When the sintering temperature goes above 700 °C, the particle size increases, and at 900 °C micro-sized LiNi0.5Mn1.5O4 particles (with a diameter of about 4 μm) are obtained. Electrochemical tests show that the micro-sized LiNi0.5Mn1.5O4 powders (sintered at 900 °C) exhibit the best capacity retention at 25 °C, and after 100 cycles, 97% of initial discharge capacity can still be reached. Nano-sized LiNi0.5Mn1.5O4 powders (sintered at 700 °C) perform the best at low temperatures; when cycled at −10 °C and charged and discharged at a rate of 1 C, nano-sized LiNi0.5Mn1.5O4 powders can deliver a capacity as high as 110 mAh g−1.  相似文献   

20.
M. Reffass 《Electrochimica acta》2009,54(18):4389-4396
Pitting corrosion of carbon steel electrodes in 0.1 M NaHCO3 + 0.02 M NaCl solutions was induced by anodic polarisation. The evolution of the breakdown potential Eb with the phosphate concentration was investigated by linear voltammetry. Eb increased from −15 ± 5 mV/SCE for [HPO42−] = 0 to 180 ± 40 mV/SCE for [HPO42−] = 0.02 mol L−1. During anodic polarisation (E = 50 mV/SCE), the behaviour of the whole electrode surface, followed by chronoamperometry, was compared to the behaviour of one single pit, followed via the scanning vibrating electrode technique (SVET). The addition of a Na2HPO4 solution after the beginning of the polarisation did not lead to the repassivation of pre-existing well-grown pits. The corrosion products forming in the pits were identified in situ by micro-Raman spectroscopy. They depended on the phosphate concentration. For [HPO42−] = 0.004 mol L−1, siderite FeCO3 was detected first. It was oxidised later into carbonated green rust GR(CO32−) by dissolved O2. The beginning of the process is therefore similar to that observed in the absence of phosphate. Finally, GR(CO32−) was oxidised into ferrihydrite, the most poorly ordered form of Fe(III) oxides and oxyhydroxides. Phosphate species, adsorbing on the nuclei of FeOOH, inhibited their growth and crystallisation. For [HPO42−] = 0.02 mol L−1, siderite was accompanied by an amorphous precursor of vivianite, Fe2(PO4)3·8H2O. This shows that, in any case, phosphate species interact strongly with the iron species produced by the dissolution of steel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号