首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CO tolerance of H2-air single cell with phosphoric acid doped polybenzidazole (PA-PBI) membrane was studied in the temperature range 140-180 °C using either dry or humidified fuel. Fuel composition was varied from neat hydrogen to 67% (vol.) H2-33% CO mixtures. It was found that poisoning by CO of Pt/C and Pt-Ru/C hydrogen oxidation catalysts is mitigated by fuel humidification. Electrochemical hydrogen oxidation at Pt/C and Pt-Ru/C catalysts in the presence of up to 50% CO in dry or humidified H2-CO mixtures was studied in a cell driven mode at 180 °C. High CO tolerance of Pt/C and Pt-Ru/C catalysts in FC with PA-PBI membrane at 180 °C can be ascribed to combined action of two factors—reduced energy of CO adsorption at high temperature and removal of adsorbed CO from the catalyst surface by oxidation. Rate of electrochemical CO oxidation at Pt/C and Pt-Ru/C catalysts was measured in a cell driven mode in the temperature range 120-180 °C. Electrochemical CO oxidation might proceed via one of the reaction paths—direct electrochemical CO oxidation and water-gas shift reaction at the catalyst surface followed by electrochemical hydrogen oxidation stage. Steady state CO oxidation at Pt-Ru/C catalyst was demonstrated using CO-air single cell with Pt-Ru/C anode. At 180 °C maximum CO-air single cell power density was 17 mW cm−2 at cell voltage U = 0.18 V.  相似文献   

2.
In this work, a novel self-humidifying membrane electrode assembly (MEA) with Pt/SiO2/C as anode catalyst was developed to improve the performance of proton exchange membrane fuel cell (PEMFC) operating at low humidity conditions. The characteristics of the composite catalysts were investigated by XRD, TEM and water uptake measurement. The optimal performance of the MEA was obtained with the 10 wt.% of silica in the composite catalyst by single cell tests under both high and low humidity conditions. The low humidity performance of the novel self-humidifying MEA was evaluated in a H2/air PEMFC at ambient pressure under different relative humidity (RH) and cell temperature conditions. The results show that the MEA performance was hardly changed even if the RHs of both the anode and cathode decreased from 100% to 28%. However, the low humidity performance of the MEA was quite susceptible to the cell temperature, which decreased steeply as the cell temperature increased. At a cell temperature of 50 °C, the MEA shows good stability for low humidity operating: the current density remained at 0.65 A cm−2 at a usual work voltage of 0.6 V without any degradation after 120 h operation under 28% RH for both the anode and cathode.  相似文献   

3.
F. Mura 《Electrochimica acta》2007,52(19):5824-5828
Nafion® composite membranes were formed from a recast procedure already applied by the authors. Montmorillonite (MMT) and titanium dioxide (TiO2) were used separately as fillers in the recast process and dimethylformamide (DMF) was used as the casting solvent. Addition of 1 wt.% MMT or 1 wt.% TiO2 to the ionomer dispersions prior to the heat treatment demonstrated that there is an increase in water content of the recast membranes. For both the samples, it was verified that the tangential conductivity increases with increasing relative humidity (RH) of the environment. Fuel cell tests carried out with recast membranes showed that the best performances are seen when the anode and cathode humidification temperatures are low. With a ΔT of −35 °C between cell temperature and anode humidification, the conductivity of additive-containing samples is 10% higher than that of additive-free membranes.  相似文献   

4.
Polarization losses of proton exchange membrane (PEM) fuel cells at 120 °C and reduced relative humidity (RH) were analyzed. Reduced RH affects membrane and electrode ionic resistance, catalytic activity and oxygen transport. For a cell made of Nafion® 112 membrane and electrodes that have 35 wt.% Nafion® and 0.3 mg/cm2 platinum supported on carbon, membrane resistance at 20%RH was 0.407 Ω cm2 and electrode resistance 0.203 Ω cm2, significantly higher than 0.092 and 0.041 Ω cm2 at 100%RH, respectively. In the kinetically controlled region, 20%RH resulted in 96 mV more cathode activation loss than 100%RH. Compared to 100%, 20%RH also produced significant oxygen transport loss across the ionomer film in the electrode, 105 mV at 600 mA/cm2. The significant increase in polarization losses at elevated temperature and reduced RH indicates the extreme importance of designing electrodes for high temperature PEM fuel cells since membrane development has always taken most emphasis.  相似文献   

5.
Nafion®-MO2 (M = Zr, Si, Ti) nanocomposite membranes were synthesized with the goal of increasing the proton conductivity and water retention at higher temperatures and lower relative humidities (120 °C, 40% RHs) as well as to improve the thermo-mechanical properties. The sol-gel approach was utilized to incorporate inorganic oxide nanoparticles within the pores of Nafion® membrane. The membranes synthesized by this approach were completely transparent and homogeneous as compared to membranes prepared by alternate casting methods which are cloudy due to the larger particle size. At 90 °C and 120 °C, all Nafion®-MO2 sol-gel composites exhibited higher water sorption than Nafion® membrane. However, at 90 °C and 120 °C, the conductivity was enhanced in only Nafion®-ZrO2 sol-gel composite with a 10% enhancement at 40% RH over Nafion®. This can be attributed to the increase in acidity of zirconia based sol-gel membranes shown by a decrease in equivalent weight in comparison to other nanocomposites based on Ti and Si. In addition, the TGA and DMA analyses showed improvement in degradation and glass transition temperature for nanocomposite membranes over Nafion®.  相似文献   

6.
The performance of H2/O2 proton exchange membrane fuel cells (PEMFCs) fed with CO-contaminated hydrogen was investigated for anodes with PdPt/C and PdPtRu/C electrocatalysts. The physicochemical properties of the catalysts were characterized by energy dispersive X-ray (EDX) analyses, X-ray diffraction (XRD) and “in situ” X-ray absorption near edge structure (XANES). Experiments were conducted in electrochemical half and single cells by cyclic voltammetry (CV) and I-V polarization measurements, while DEMS was employed to verify the formation of CO2 at the PEMFC anode outlet. A quite high performance was achieved for the PEMFC fed with H2 + 100 ppm CO with the PdPt/C and PdPtRu/C anodes containing 0.4 mg metal cm−2, with the cell presenting potential losses below 200 mV at 1 A cm−2, with respect to the system fed with pure H2. For the PdPt/C catalysts no CO2 formation was seen at the PEMFC anode outlet, indicating that the CO tolerance is improved due to the existence of more free surface sites for H2 electrooxidation, probably due to a lower Pd-CO interaction compared to pure Pd or Pt. For PdPtRu/C the CO tolerance may also have a contribution from the bifunctional mechanism, as shown by the presence of CO2 in the PEMFC anode outlet.  相似文献   

7.
This paper reports on the composition and flow rate of outlet gas and current density during the reforming of CH4 with CO2 using three different electrochemical cells: cell A, with Ni−GDC (Gd-doped ceria: Ce0.8Gd0.2O1.9) cathode/porous GDC electrolyte/Cu−GDC anode, cell B, with Cu−GDC cathode/ porous GDC electrolyte/Cu−GDC anode and cell C, with Ru−GDC cathode/ porous GDC electrolyte/ Cu−GDC anode. In the cathode, CO2 reacts with supplied electrons to form CO fuel and O2− ions (CO2+2e→CO+O2−). Too low affinity of Cu cathode to CO2 in cell B reduced the reactivity of the CO2 with electrons. The CO fuel, O2− ions and CH4 gas were transported to the anode through the porous GDC mixed conductor of O2− ions and electrons. In the anode, CH4 reacts with O2− ions to produce CO and H2 fuels (CH4+O2−→2 H2+CO+2e). The reforming efficiency at 700−800 °C was lowest in cell B and highest in cell A. The Cu anode in cells A and C worked well to oxidize CH4 with O2− ions (2Cu+O2−→Cu2O+2e, Cu2O+CH4→2Cu+CO+2H2). However, a blockage of the outlet gas occurred in all the cells at 700−800 °C. The gas flow is inhibited due to a reduction in pore size in the cermet cathode, as well as sintering and grain growth of Cu metal in the anode during the reforming.  相似文献   

8.
The fabrication and characterization of Nafion-TiO2 hybrid electrolytes for proton exchange membrane fuel cell (PEMFC) operating at high temperature are reported. A low temperature sol-gel synthesis, based on the formation of a sol from Ti-peroxy complex, was used to effectively incorporate hydrophilic anatase TiO2 nanoparticles into the Nafion matrix. Fuel cell testing at temperatures up to 130 °C revealed that the hybrid membranes exhibit an increasing ohmic drop with increasing TiO2 content incorporated into the polymer. However, at high temperatures and low relative humidity (RH) the performance of fuel cells using the hybrid electrolytes was found to surpass the one of Nafion. Electrochemical impedance spectroscopy (EIS) measurements suggest that enhancement of the fuel cell performance at high temperature and low RH is related to a reduced polarization resistance, indicating that the hybrid electrolytes contribute for a better water management of the system. In addition, it was found that the inorganic phase confers stability to the polymer, allowing for the operation at high temperature and reduced RH.  相似文献   

9.
The performance and stability of PTFE/Nafion/Silicate composite membranes (PNS membrane) were studied at low and medium operating temperatures with different humidity, and compared with the Nafion112 membrane at the same conditions. The PNS membrane was prepared by impregnation of PTFE/Nafion composite membrane via sol-gel process with TEOS (tetraethoxysilane). When operated cell at low temperature of 60 °C with 100% R.H. humidified H2/O2 gases, the PNS membrane performs better than Nafion112, with 1.0, and 0.4 W/cm2, respectively. When operated cell at 60 °C with 37% R.H. humidified gases, the discharge stability of PNS membrane is stable than that of Nafion112, this is due to that silicate could hold more water in the PNS membrane at low relative humidity. While the inlet of cell gases temperature keeps at 80 °C, the cell temperature varied 90, 100, and 110 °C, with 20 psig back pressure, their relative humidities were 67, 48 and 33%, respectively. The stability of discharge current remains constant except in the case of cell temperature being as high as 110 °C. It is believed that silicate could hold water except in the case of cell temperature at 110 °C, which is resulted as the membrane dehydration. On the other hand, the Nafion112 cannot operate at low humidity with cell temperature higher than 80 °C owing to membrane dehydration. The silica modified PTFE/Nafion membrane shows the improving cell performance at lower relative humidity due to adsorbed water inside the membrane and catalyst layer.  相似文献   

10.
T. Uma 《Electrochimica acta》2007,52(24):6895-6900
The scope of the present work was to investigate and evaluate the electrochemical activity of H2/O2 fuel cells based on the influence of a heteropolyacid glass membrane with a Pt/C electrode at low temperature. A new trend of sol-gel derived PMA (H3PMo12O40) heteropolyacid-containing glass membranes inherent of a high proton conductivity and mechanical stability, was heat treated at 600 °C and implemented to H2/O2 fuel cell activities through electrochemical characterization. Significant research has been focused on the development of H2/O2 fuel cells using optimization of heteropolyacid glasses as electrolytes with Pt/C electrodes at 30 °C. A maximum power density of 23.9 mW/cm2 was attained for operation with hydrogen and oxygen, respectively, at 30 °C and 30% humidity with the PMA glass membranes (4-92-4 mol%). Impedance spectroscopy measurements were performed on a total ohmic cell resistance of a membrane-electrode-assembly (MEA) at the end of the experiment.  相似文献   

11.
Operation of a proton exchange membrane (PEM) fuel cell without external humidification (or 0% relative humidity, abbreviated as 0% RH) of the reactant gases is highly desirable, because it can eliminate the gas humidification system and thus decrease the complexity of the PEM fuel cell system and increase the system volume power density (W/l) and weight power density (W/kg). In this investigation, a PEM fuel cell was operated in the temperature range of 23-120 °C, in particular in a high temperature PEM fuel cell operation range of 80-120 °C, with dry reactant gases, and the cell performance was examined according to varying operation parameters. An ac impedance method was used to compare the performance at 0% RH with that at 100% RH; the results suggested that the limited proton transfer process to the Pt catalysts, mainly in the inonomer within the membrane electrode assembly (MEA) could be responsible for the performance drop. It was demonstrated that operating a fuel cell using a commercially available membrane (Nafion® 112) is feasible under certain conditions without external humidification. However, the cell performance at 0% RH decreased with increasing operation temperature and reactant gas flow rate and decreasing operation pressure.  相似文献   

12.
The activity of a carbon supported PtWO3 (PtWO3/C) catalyst in the CO oxidation and CO2 reduction reactions was evaluated in sulfuric acid solution at room temperature.Cyclic voltammetry combined with on-line mass spectrometry shows that the oxidation of both saturated CO adlayer and dissolved CO on PtWO3/C material commences at rather low potentials, ca. 0.18 and 0.12 V vs. RHE, respectively. However, the low-potential process seems to involve only a minor fraction of the CO adlayer, the major part of the adsorbed CO layer being oxidised at the potentials as high as those for pure Pt catalysts—ca. 0.7 V vs. RHE. PtWO3/C material was found to reversibly de-activate upon a prolonged exposure to the CO-saturated solution due to the inhibition of the hydrogen tungsten bronze formation.The reduction of CO2 on PtWO3/C leads to the formation of an adsorbate - presumably CO - on the Pt sites of the catalyst. Although the rate of the adsorbate build-up on PtWO3/C at 0.1 V is lower than that on pure Pt/C, our results indicate that upon a prolonged exposure of the PtWO3/C electrode to a CO2-saturated solution a complete poisoning of the Pt sites with the adsorbate is likely to occur at room temperature.  相似文献   

13.
The effect of the inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported anode electrocatalysts on CO tolerance in proton exchange membrane fuel cells (PEMFC) has been investigated by cyclic voltammetry and fuel cell tests. CO stripping voltammetry on binary PtxM/C (M: Mo, Nb, Ta) reveals partial oxidation of the CO adlayer at low potential, with PtMo (4:1)/C exhibiting the lowest value. At 80 °C, the operating temperature of the fuel cell, CO oxidation was observed at potentials close to 0 V versus the reversible hydrogen electrode (RHE). No significant difference for CO electro-oxidation at the lower potential limit, compared to PtRu/C, was observed for PtRuMy/C (M: Mo, Nb). Fuel cell tests demonstrated that while all the prepared catalysts exhibited enhanced performance compared to Pt/C, only the addition of a relatively small amount of Mo to PtRu results in an electrocatalyst with a higher activity, in the presence of carbon monoxide, to PtRu/C, the current catalyst of choice for PEM fuel cell applications.  相似文献   

14.
ATR-FTIRAS measurements were conducted to investigate nature of water molecules co-adsorbed with CO on highly dispersed PtRu alloy and Pt catalysts supported on carbon black in the temperature range between 23 °C and 60 °C. Each catalyst was uniformly dispersed and fixed by Nafion® film of 0.0125 μm thickness on a chemically deposited gold film. Adsorption of CO was conducted and monitored by ATR-FTIRAS for 30 min in 1% CO saturated 0.1 M HClO4 after stepping the potential from 1.2 V and 1.0 V to 0.05 V on Pt/C and PtRu/C, respectively. Similar atop and bridge bonded CO bands were observed on both PtRu/C and Pt/C, but a smaller relative band intensity, bridge bonded vs. atop CO, was observed on PtRu/C compared to Pt/C. A distinct O-H stretching band was found around 3643 cm−1 and 3630 cm−1 on PtRu/C and Pt/C, respectively, upon CO adsorption. They are assigned to non-hydrogen bonded water molecules co-adsorbed with CO on these catalysts. We found that the number of non-hydrogen bonded water molecules co-adsorbed with a given number of CO molecules decreases with increasing temperature and is higher on PtRu/C than Pt/C at each temperature. We interpret the higher ability of water co-adsorption at PtRu/C over Pt/C is due to stronger H2O-metal interactions on the alloy surface. We present a model of the CO-H2O co-adsorbed layer based on the bilayer model of water on metal surfaces.  相似文献   

15.
Nano-sized Sm0.5Sr0.5CoO3−δ (SSC) was fabricated onto the inner face of porous BaCe0.8Sm0.2O2.9 (BCS) backbone by ion impregnation technique to form a composite cathode for solid oxide fuel cells (SOFCs) with BCS, a proton conductor, as electrolyte. The electro-performance of the composite cathodes was investigated as function of fabricating conditions, and the lowest polarization resistance, about 0.21 Ω cm2 at 600 °C, was achieved with BCS backbone sintered at 1100 °C, SSC layer fired at 800 °C, and SSC loading of 55 wt.%. Impedance spectra of the composite cathodes consisted of two depressed arcs with peak frequency of 1 kHz and 30 Hz, respectively, which might correspond to the migration of proton and the dissociative adsorption and diffusion of oxygen, respectively. There was an additional arc peaking at 1 Hz in the Nyquist plots of a single cell, which should correspond to the anode reactions. With electrolyte about 70 μm in thickness, the simulated anode, cathode and bulk resistances of cells were 0.021, 0.055 and 0.68 Ω cm2 at 700 °C, relatively, and the maximum power density was 307 mW cm−2 at 700 °C.  相似文献   

16.
The polarization performance of two PEM fuel cells (with anode PtRu/C catalyst) connected either in parallel or serial, was compared to the performance of a single PEM fuel cell in galvanostatic operation using CO-free H2 or 200 ppm CO-containing H2 stream as anode feed at ambient temperature. Spontaneous potential oscillations were observed experimentally for the coupled configuration with two cells connected in serial or parallel using CO-containing H2 feed at various current densities applied. The potential oscillations are ascribed by the dynamic CO adsorption and subsequent electrochemical CO oxidation on the anode. The measured anode outlet CO concentration was found to decrease with the order: single cell > parallel cells > serial cells at various current densities and anodic flow rates. The low anode outlet CO concentration (<10 ppm) at high current densities applied showed that CO in the anode feed was removed efficiently by the electrochemical CO oxidation occurring on the PtRu anode. The anode outlet CO concentration decreased as follows: a single cell > the parallel cells > the serial cells at broad range of current densities and anodic flow rates. The highest CO conversion and the highest average power output at equal hydrogen recovery degree were obtained with serially coupled fuel cells.  相似文献   

17.
A perfluorosulfonic acid (PFSA) polymer with pendant side chain -O(CF2)4SO3H was doped with the heteropoly acids (HPAs), H3PW12O40 and H4SiW12O40. Infrared spectroscopy revealed a strong interaction between the HPA and the PFSA ionomer. Modes associated with the peripheral bonds of the HPA were shifted to lower wave numbers when doped into PFSA membranes. Small-angle X-ray scattering (SAXS) measurements showed the presence of large crystallites of HPA in the membrane with d spacings of ca. 10 Å, close to the lattice spacing observed in bulk HPA crystals. Under wet conditions the HPA was more dispersed and constrained the size of the sulfonic acid clusters to 20 Å at a 5 wt% HPA doping level, the same as in the vacuum treated ionomer samples. Under conditions of minimum hydration the HPA decreased the Ea for the self-diffusion of water from 27 to 15 kJ mol−1. The reverse trend was seen under 100% RH conditions. Proton conductivity measurements showed improved proton conductivity of the HPA doped PFSAs at a constant dew point of 80 °C for all temperatures up to 120 °C and at all relative hummidities up to 80%. The activation energy for proton conduction generally was lower than for the undoped materials at RH ≤80%. Significantly the Ea was 1/2 that of the undoped material at RHs of 40 and 60%. A practical proton conductivity of 113 mS cm−1 was observed at 100 °C and 80% RH.  相似文献   

18.
In this paper, we first reported a novel self-humidifying composite membrane for the proton exchange membrane fuel cell (PEMFC). Cs2.5H0.5PWO40/SiO2 catalyst particles were dispersed uniformly into the Nafion® resin, and then Cs2.5H0.5PWO40-SiO2/Nafion composite membrane was prepared using solution-cast method. Compared with the H3PWO40 (PTA), the Cs2.5H0.5PWO40/SiO2 was steady due to the substitute of H+ with Cs+ and the interaction between the Cs2.5H0.5PWO40 and SiO2. And compared with the performance of the fuel cell with commercial Nafion® NRE-212 membrane, the cell performance with the self-humidifying composite membrane was obviously improved under both humidified and dry conditions at 60 and 80 °C. The best performance under dry condition was obtained at 60 °C. The self-humidifying composite membrane could minimize membrane conductivity loss under dry conditions due to the presence of catalyst and hydrophilic Cs2.5H0.5PWO40/SiO2 particles.  相似文献   

19.
Ni modified K2CO3/MoS2 catalyst was prepared and the performance of higher alcohol synthesis catalyst was investigated under the conditions: T = 280–340 °C, H2/CO (molar radio) = 2.0, GHSV = 3000 h 1, and P = 10.0 MPa. Compared with conventional K2CO3/MoS2 catalyst, Ni/K2CO3/MoS2 catalyst showed higher activity and higher selectivity to C2+OH. The optimum temperature range was 320–340 °C and the maximum space-time yield (STY) of alcohol 0.30 g/ml h was obtained at 320 °C. The selectivity to hydrocarbons over Ni/K2CO3/MoS2 was higher, however, it was close to that of K2CO3/MoS2 catalyst as the temperature increased. The results indicated that nickel was an efficient promoter to improve the activity and selectivity of K2CO3/MoS2 catalyst.  相似文献   

20.
CuO-CoO-Cr2O3 mixed with MFI Zeolite (Si/Al = 35) prepared by co-precipitation was used for synthesis gas conversion to long chain hydrocarbon fuel. CuO-CoO-Cr2O3 catalyst was prepared by co-precipitation method using citric acid as complexant with physicochemical characterization by BET, TPR, TGA, XRD, H2-chemisorptions, SEM and TEM techniques. The conversion experiments were carried out in a fixed bed reactor, with different temperatures (225-325 °C), gas hourly space velocity (457 to 850 h−1) and pressure (28-38 atm). The key products of the reaction were analyzed by gas chromatography mass spectroscopy (GC-MS). Significantly high yields of liquid aromatic hydrocarbon products were obtained over this catalyst. Higher temperature and pressure favored the CO conversion and formation of these liquid (C5-C15) hydrocarbons. Higher selectivity of C5 + hydrocarbons observed at lower H2/CO ratio and GHSV of the feed gas. On the other hand high yields of methane resulted, with a decrease in C5+ to C11+ fractions at lower GHSV. Addition of MFI Zeolite (Si/Al = 35) to catalyst CuO-CoO-Cr2O3 resulted a high conversion of CO-hydrogenation, which may be due to its large surface area and small particle size creating more active sites. The homogeneity of various components was also helpful to enhance the synergistic effect of Co promoters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号