首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D. Arumugam 《Electrochimica acta》2010,55(28):8709-8716
LiMn2O4 spinel cathode materials were coated with 0.5, 1.0, and 1.5 wt.% CeO2 by a polymeric process, followed by calcination at 850 °C for 6 h in air. The surface-coated LiMn2O4 cathode materials were physically characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron microscopy (XPS). XRD patterns of CeO2-coated LiMn2O4 revealed that the coating did not affect the crystal structure or the Fd3m space group of the cathode materials compared to uncoated LiMn2O4. The surface morphology and particle agglomeration were investigated using SEM, TEM image showed a compact coating layer on the surface of the core materials that had average thickness of about 20 nm. The XPS data illustrated that the CeO2 completely coated the surface of the LiMn2O4 core cathode materials. The galvanostatic charge and discharge of the uncoated and CeO2-coated LiMn2O4 cathode materials were measured in the potential range of 3.0-4.5 V (0.5 C rate) at 30 °C and 60 °C. Among them, the 1.0 wt.% of CeO2-coated spinel LiMn2O4 cathode satisfies the structural stability, high reversible capacity and excellent electrochemical performances of rechargeable lithium batteries.  相似文献   

2.
CeO2-coated LiCoO2 particles were successfully synthesized by a sol-gel coating of CeO2 on the surface of the LiCoO2 powder and subsequent heat treatment at 700 °C for 5 h. The surface-modified and pristine LiCoO2 powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Auger electron spectroscopy (AES), slow rate cyclic voltammogram (CV), and differential scanning calorimetry (DSC). Cyclic voltammetry curves suggested that the CeO2 coating suppressed the phase transitions. Unlike pristine LiCoO2, the CeO2-coated LiCoO2 cathode exhibited better capacity retention than the pristine LiCoO2 electrode in the higher cutoff voltage. Differential scanning calorimetric data revealed the higher thermal stability of the CeO2-coated LiCoO2 electrode.  相似文献   

3.
Commercial LiCoO2 has been modified with LaF3 as a new coating material. The surface modified materials were characterized by X-ray diffraction (XRD), transmission electronic microscopy (TEM), field emission scanning electron microscopy (FE-SEM), auger electron spectroscopy (AES) and galvanostatic charge–discharge cycling. The LaF3-coated LiCoO2 had an initial discharge specific capacity of 177.4 mAh g−1 within the potential ranges 2.75–4.5 V (vs. Li/Li+), and showed a good capacity retention of 90.9% after 50 cycles. It was found that the overcharge tolerance of the coated cathode was significantly better than that of the pristine LiCoO2 under the same conditions – the capacity retention of the pristine LiCoO2 was 62.3% after 50 cycles. The improvement could be attributed to the LaF3 coating layer that hinders interaction between LiCoO2 and electrolyte and stabilizes the structure of LiCoO2. Moreover, DSC showed that the coated LiCoO2 had a higher thermal stability than the pristine LiCoO2.  相似文献   

4.
A high-performance LiNi0.8Co0.2O2 cathode was successfully fabricated by a sol-gel coating of CeO2 to the surface of the LiNi0.8Co0.2O2 powder and subsequent heat treatment at 700 °C for 5 h. The surface-modified and pristine LiNi0.8Co0.2O2 powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), slow rate cyclic voltammogram (CV), and differential scanning calorimetry (DSC). Unlike pristine LiNi0.8Co0.2O2, the CeO2-coated LiNi0.8Co0.2O2 cathode exhibits no decrease in its original specific capacity of 182 mAh/g (versus lithium metal) and excellent capacity retention (95% of its initial capacity) between 4.5 and 2.8 V after 55 cycles. The results indicate that the surface treatment should be an effective way to improve the comprehensive properties of the cathode materials for lithium ion batteries.  相似文献   

5.
Electrochemical and thermal properties of Co3(PO4)2- and AlPO4-coated LiNi0.8Co0.2O2 cathode materials were compared. AlPO4-coated LiNi0.8Co0.2O2 cathodes exhibited an original specific capacity of 170.8 mAh g−1 and had a capacity retention (89.1% of its initial capacity) between 4.35 and 3.0 V after 60 cycles at 150 mA g−1. Co3(PO4)2-coated LiNi0.8Co0.2O2 cathodes exhibited an original specific capacity of 177.6 mAh g−1 and excellent capacity retention (91.8% of its initial capacity), which was attributed to a lithium-reactive Co3(PO4)2 coating. The Co3(PO4)2 coating material could react with LiOH and Li2CO3 impurities during annealing to form an olivine LixCoPO4 phase on the bulk surface, which minimized any side reactions with electrolytes and the dissolution of Ni4+ ions compared to the AlPO4-coated cathode. Differential scanning calorimetry results showed Co3(PO4)2-coated LiNi0.8Co0.2O2 cathode material had a much improved onset temperature of the oxygen evolution of about 218 °C, and a much lower amount of exothermic-heat release compared to the AlPO4-coated sample.  相似文献   

6.
LiNi0.5Mn1.5O4 spinels coated with various amounts of fumed silica have been synthesized and investigated as cathode materials for high-voltage lithium-ion batteries at the elevated temperature (55 °C). The morphology and structure of the coated LiNi0.5Mn1.5O4 samples were characterized by XRD, TEM and EDX. It was found that the surfaces of the coated LiNi0.5Mn1.5O4 samples are covered with a porous, amorphous, nanostructured SiO2 layer. The results of electrochemical experiments showed that the SiO2-coated LiNi0.5Mn1.5O4 samples display obviously improved capacity retention rate, and the improvement effect enhances with the increase of SiO2 content. The XPS results revealed that the surfaces of the SiO2-coated LiNi0.5Mn1.5O4 cathode materials have relatively low content of LiF, and this is mainly responsible for their improved electrochemical cycling stability.  相似文献   

7.
The deposition of Al2O3 on LiCoO2 electrodes using a low-temperature atomic layer deposition has been investigated. Scanning electron microscopy confirms that Al2O3 films can be homogeneously deposited on LiCoO2 particles of porous electrodes at 120 °C. The results of X-ray photoelectron spectroscopy show that the Al2O3 preferentially deposits on the LiCoO2. Furthermore, the results of cycling stability tests show that the cells with Al2O3-coated LiCoO2 electrodes have enhanced performance.  相似文献   

8.
LiNi1/3Co1/3Mn1/3O2 cathode materials have been coated with Al2O3 nano-particles using sol-gel processing to improve its electrochemical properties. The X-ray diffraction (XRD) pattern of the as-prepared Al2O3 nano-particles was indexed to the cubic structure of the γ-Al2O3 phase and had an average size of ∼4 nm. The XRD showed that the structure of LiNi1/3Co1/3Mn1/3O2 was not affected by the Al2O3 coating. However, the Al2O3 coatings on LiNi1/3Co1/3Mn1/3O2 improved the cyclic life performance and rate capability without decreasing its initial discharge capacity. These electrochemical properties were also compared with those of LiAlO2-coated LiNi1/3Co1/3Mn1/3O2 cathode material. The electrochemical impedance spectroscopy (EIS) was studied to understand the enhanced electrochemical properties of the Al2O3-coated LiNi1/3Co1/3Mn1/3O2 compared to uncoated LiNi1/3Co1/3Mn1/3O2.  相似文献   

9.
The electrochemical properties of AlPO4-coated LiCoO2 cathodes prepared in a water or ethanol solvent were characterized with the view of stabilizing LiCoO2 at charge-cutoff voltages of 4.6 and 4.8 V. Under the influence of the AlPO4 crystallinity, the coated LiCoO2 prepared in ethanol had better capacity retention than those prepared in water. This enhancement also correlated with the improved suppression of Li-diffusivity decay in the coated cathode from the ethanol compared to that from water. In addition, the differential scanning calorimetry (DSC) results of the AlPO4 nanoparticle-coated LiCoO2 with ethanol showed an enhanced thermal stability.  相似文献   

10.
In this study, the LiCoO2/LiNi1/3Mn1/3Co1/3O2 mixed cathode electrodes were prepared and their electrochemical performances were measured in a high cut-off voltage. As the contents of LiNi1/3Mn1/3Co1/3O2 in the mixed cathode increases, the reversible specific capacity and cycleability of the electrode enhanced, but the rate capability deteriorated. On the contrary, the rate capability of the cathode enhanced but the reversible specific capacity and cycleability deteriorated, according to increasing the contents of LiCoO2 in the mixed cathode. The cell of LiCoO2/LiNi1/3Mn1/3Co1/3O2 (50:50, wt.%) mixed cathode delivers a discharge capacity of ca. 168 mAh/g at a 0.2 C rate. The capacity of the cell decreased with the current rate and a useful capacity of ca. 152 mAh/g was obtained at a 2.0 C rate. However, the cell shows very stable cycleability: the discharge capacity of the cell after 20th charge/discharge cycling maintains ca. 163 mAh/g.  相似文献   

11.
LiNi1/3Co1/3Mn1/3O2 and LiCoO2 cathode materials were synthesized by using a supercritical water (SCW) method with a metal salt solution in a batch reactor. Stoichiometric LiNi1/3Co1/3Mn1/3O2 was successfully synthesized in a 10-min reaction without calcination, while overlithiated LiCoO2 (Li1.15CoO2) was synthesized using the batch SCW method. The physical properties and electrochemical performances of LiNi1/3Co1/3Mn1/3O2 were compared to those of Li1.15CoO2 by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge/discharge cycling tests. The XRD pattern of LiNi1/3Co1/3Mn1/3O2 was found to be similar to that of Li1.15CoO2, showing clear splitting of the (0 0 6)/(1 0 2) and (1 0 8)/(1 1 0) peak pairs as particular characteristics of the layered structure. In addition, both cathode powders showed good crystallinity and phase purity, even though a short reaction time without calcination was applied to the SCW method. The initial specific discharge capacities of the Li1.15CoO2 and LiNi1/3Co1/3Mn1/3O2 powders at a current density of 0.24 mA/cm2 in 2.5-4.5 V were 149 and 180 mAh/g, and their irreversible capacity loss was 20 and 17 mAh/g, respectively. The discharge capacities of the Li1.15CoO2 and LiNi1/3Co1/3Mn1/3O2 powders decreased with cycling and remained at 108 and 154 mAh/g after 30 cycles, which are 79% and 89% of the initial capacities. Compared to the overlithiated LiCoO2 cathode powders, the LiNi1/3Co1/3Mn1/3O2 cathode powders synthesized by SCW method had better electrochemical performances.  相似文献   

12.
A carbon coated Li3V2(PO4)3 cathode material for lithium ion batteries was synthesized by a sol-gel method using V2O5, H2O2, NH4H2PO4, LiOH and citric acid as starting materials, and its physicochemical properties were investigated using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX), transmission electron microscope (TEM), and electrochemical methods. The sample prepared displays a monoclinic structure with a space group of P21/n, and its surface is covered with a rough and porous carbon layer. In the voltage range of 3.0-4.3 V, the Li3V2(PO4)3 electrode displays a large reversible capacity, good rate capability and excellent cyclic stability at both 25 and 55 °C. The largest reversible capacity of 130 mAh g−1 was obtained at 0.1C and 55 °C, nearly equivalent to the reversible cycling of two lithium ions per Li3V2(PO4)3 formula unit (133 mAh g−1). It was found that the increase in total carbon content can improve the discharge performance of the Li3V2(PO4)3 electrode. In the voltage range of 3.0-4.8 V, the extraction and reinsertion of the third lithium ion in the carbon coated Li3V2(PO4)3 host are almost reversible, exhibiting a reversible capacity of 177 mAh g−1 and good cyclic performance. The reasons for the excellent electrochemical performance of the carbon coated Li3V2(PO4)3 cathode material were also discussed.  相似文献   

13.
Fabrications of micro-dot electrodes of LiCoO2 and Li4Ti5O12 on Au substrates were demonstrated using a sol-gel process combined with a micro-injection technology. A typical size of prepared dots was about 100 μm in diameter, and the dot population on the substrate was 2400 dots cm−2. The prepared LiCoO2 and Li4Ti5O12 micro-dot electrodes were characterized with scanning electron microscopy, X-ray diffraction, micro-Raman spectroscopy, and cyclic voltammetry. The prepared LiCoO2 and Li4Ti5O12 micro-dot electrodes were evaluated in an organic electrolyte as cathode and anode for lithium micro-battery, respectively. The LiCoO2 micro-dot electrode exhibited reversible electrochemical behavior in a potential range from 3.8 to 4.2 V versus Li/Li+, and the Li4Ti5O12 micro-dot electrode showed sharp redox peaks at 1.5 V.  相似文献   

14.
The stability of one material, Ti/CuxCo3−xO4, as anode and also cathode was investigated for electrolysis of alkaline aqueous solution. The electrodes were prepared by thermal decomposition method with x varied from 0 to 1.5. The accelerated life test illustrated that the electrodes with x = 0.3 nominally showed the best performance, with a total service life of 1080 h recorded in 1 M NaOH solution under alternating current direction at 1 A cm−2 and 35 °C. The effects of copper content in electrode coating were examined in terms of electrode stability, surface morphology, coating resistivity and coating compositions. The presence of Cu in the spinel structure of Co3O4 could significantly enhance the electrochemical and physicochemical properties. The trends of crystallographic properties and surface morphology have been analyzed systemically before, during and after the electrodes were employed in alkaline electrolysis. The oxygen evolution would lead to the consumption of the coating material and the progressive cracking of the coating. Along with hydrogen evolution, cobalt oxide could be reduced to metal Co and Co(OH)2 with particle sizes changed to smaller values in crystal and/or amorphous form at the cathode. The formation of Co is the key process for this electrode to serve as both anode and cathode. It is also the main reason leading to the eventual failure of the electrodes.  相似文献   

15.
Lanthanum-doped LiCoO2 composite cathode materials, containing 0.1-10 mol% of La were synthesized by citric acid aided combustion technique. Thermal analyses showed that the sharp decomposition reaction for pristine LiCoO2 became sluggish upon addition of lanthanum. X-ray diffraction analyses of the composites revealed existence of minute quantities of lanthanum-rich perovskite phases—rhombohedral LaCoO3 and tetragonal La2Li0.5Co0.5O4 (14/mmm), along with rhombohedral LiCoO2. Electron microscopy showed a distinct grain growth with increasing La content. An increase of about two orders of magnitude in the electrical conductivity (1.09 × 10−3 S cm−1) was observed for 1.0 mol% La-doped LiCoO2. An excellent cycling performance with capacity retention by a factor of ∼10 in comparison to the pristine LiCoO2 was observed for the composite cathode containing 5.0 mol% La, when 2032 type coin cells were cycled at 5C rate. This has been ascribed to the structural stability induced by La doping and presence of the ion-conducting phase La2Li0.5Co0.5O4 which acts as a solid electrolyte for Li+ ions. A negligible growth of impedance upon repeated cycling has been observed. Cyclic voltammetry showed a remarkable improvement in reversibility and stability of the La-doped electrodes. These composite cathodes might be very useful for high rate power applications.  相似文献   

16.
For high-voltage cycling of rechargeable Li batteries, a nano-scale amorphous Li-ion conductor, lithium phosphorus oxynitride (Lipon), has been coated on surfaces of LiCoO2 particles by combining a RF-magnetron sputtering technique and mechanical agitation of LiCoO2 powders. LiCoO2 particles coated with 0.36 wt% (∼1 nm thick) of the amorphous Lipon, retain 90% of their original capacity compared to non-coated cathode materials that retain only 65% of their original capacity after more than 40 cycles in the 3.0–4.4 V range with a standard carbonate electrolyte. The reason for the better high-voltage cycling behavior is attributed to reduction in the side reactions that cause increase of the cell resistance during cycling. Further, Lipon coated particles are not damaged, whereas uncoated particles are badly cracked after cycling. Extending the charge of Lipon-coated LiCoO2 to higher voltage enhances the specific capacity, but more importantly the Lipon-coated material is also more stable and tolerant of high voltage excursions. A drawback of Lipon coating, particularly as thicker films are applied to cathode powders, is the increased electronic resistance that reduces the power performance.  相似文献   

17.
A novel method to improve the cycling performance of LiCo1/3Ni1/3Mn1/3O2 in lithium-ion batteries by 1.0 wt.% CeO2-coating is presented in this work. The crystalline structure and morphology of the synthesized powder have been characterized by XRD, SEM, TEM and their electrochemical performances were evaluated by CV, EIS and galvonostatic charge/discharge tests. It is found that CeO2 forms a layer on the surface of LiCo1/3Ni1/3Mn1/3O2 without destroying the crystal structure of the core material. Electrochemical test indicates that CeO2-coating could improve the cycling performance of LiCo1/3Ni1/3Mn1/3O2. At room temperature, the capacity retention of 1.0 wt.% CeO2-coated material is 93.2% after 12 cycles at 3.0 C while that of the bare sample is only 86.6%. ICP-OES proves the coating layer could protect the dissolution of the transition metal ions from LiCo1/3Ni1/3Mn1/3O2. From the analysis of EIS, the improvement of cycle ability could be attributed to the suppression of the reaction between cathode and electrolyte.  相似文献   

18.
CeO2-coated LiMn2O4 spinel cathode was synthesized using two-step synthesis method. All the samples exhibited a pure cubic spinel structure without any impurities in the XRD patterns. The results of the electrochemical performances on CeO2-coated electrode are compared to those of electrodes based on LiMn2O4 spinel without CeO2 coating. CeO2-coated LiMn2O4 cathode improved the cycling stability of the electrode. The capacity retention of 2 wt% CeO2-coated LiMn2O4 was more than 82% after 150 cycles between 3.0 and 4.4 V at room temperature and 82% after 40 cycles at elevated temperature of 60 °C. The amounts of dissolved manganese-ions in CeO2-coated LiMn2O4 significantly are smaller than pristine LiMn2O4 systems especially at elevated temperatures. Surface-modified LiMn2O4 can suppress the dissolution reaction of manganese-ions at elevated temperature and clearly improve the cyclability of the spinel LiMn2O4 cathode materials.  相似文献   

19.
LiCoO2 and LiMn2O4 cathodes were studied by X-ray diffractometry (XRD) and electron diffraction after ageing in the charged state at elevated temperature. Some cathodes were stopped at different times during ageing and XRD measurements were taken to monitor changes in the crystal structure over ageing time. The results indicate that Li-ions intercalate into the cathodes lattice during ageing thus decreasing the available discharge capacity. Analysis of electron diffraction patterns of LiCoO2 and LiMn2O4 retrieved from the cathodes after ageing shows that irreversible crystallographic transformations have taken place in both electrodes. Dark field imaging illustrates that LiCoO2 forms a layer of spinel phase on its surface. In LiMn2O4 a tetragonal distorted spinel is observed when the cathode has been in the 3 V regime for considerable length of time.  相似文献   

20.
ZnO was coated on LiNi0.5Co0.25Mn0.25O2 cathode (positive electrode) material for lithium ion battery via sol–gel method to improve the performance of LiNi0.5Co0.25Mn0.25O2. The X-ray diffraction (XRD) results indicated that the lattice structure of LiNi0.5Co0.25Mn0.25O2 was not changed distinctly after surface coating and part of Zn2+ might dope into the lattice of the material. Energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) proved that ZnO existed on the surface of LiNi0.5Co0.25Mn0.25O2. Charge and discharge tests showed that the cycle performance and rate capability were improved by ZnO coating, however, the initial capacity decreased dramatically with increasing the amount of ZnO. Differential scanning calorimetry (DSC) results showed that thermal stability of the materials was improved. The XPS spectra after charge–discharge cycles showed that ZnO coated on LiNi0.5Co0.25Mn0.25O2 promoted the decomposition of the electrolyte at the early stage of charge–discharge cycle to form more stable SEI layer, and it also can scavenge the free acidic HF species from the electrolyte. The electrochemical impedance spectroscopy (EIS) results showed ZnO coating could suppress the augment of charge transfer resistance upon cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号