首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jun Ma 《Electrochimica acta》2006,51(23):4802-4814
The electrochemical reactivity of Li3N with transition metals (M = Mn, Fe, Co, Ni) is examined by discharge/charge, cyclic voltammetry, X-ray diffraction and X-ray photoelectron spectroscopy measurements. An attempt is made to understand this reversible electrochemical reaction of transition metals with Li3N from the chemical reactions point of view. Density functional theoretical calculation results suggest that a stable complex MNLi3 could be formed by the insertion of transition metal in Li3N with exothermic as an intermediate, subsequent the decomposition process of these insertion compounds should make a main contribution to release Li.  相似文献   

2.
3.
Monoclinic lithium vanadium phosphate, Li3V2(PO4)3, has been successfully synthesized using LiF as lithium source. The one-step reaction with stoichiometric composition and relative lower sintering temperature (700 °C) has been used in our experimental processes. The solid-state reaction mechanism using LiF as lithium precursor has been studied by X-ray diffraction and Fourier transform infrared spectra. The Rietveld refinement results show that in our product sintered at 700 °C no impurity phases of VPO4, Li5V(PO4)2F2, or LiVPO4F can be detected. The solid-state reaction using Li2CO3 as Li-precursor has also been carried out for comparison. X-ray diffraction patterns indicate that impurities as Li3PO4 can be found in the product using Li2CO3 as Li-precursor unless the sintering temperatures are higher than 850 °C. An abrupt particle growth (about 2 μm) has also been observed by scanning electron microscope for the samples sintered at higher temperatures, which can result in a poor cycle performance. The product obtained using LiF as Li-precursor with the uniform flake-like particles and smaller particle size (about 300 nm) exhibits the better performance. At the 50th cycle, the reversible specific capacities for Li3V2(PO4)3 measured between 3 and 4.8 V at 1C rate are found to approach 147.1 mAh/g (93.8% of initial capacity). The specific capacity of 123.6 mAh/g can even be hold between 3 and 4.8 V at 5C rate.  相似文献   

4.
Nanorods TiO2, Fe-TiO2 (3 and 2 at.% Fe), V-TiO2 (5 at.% V) were prepared by a low temperature method and characterized by powder X-ray diffraction, thermal analysis, transmission electron microscope and BTE surface area analysis. The as-prepared samples were evaluated as catalysts for photodegradation of Congo red aqueous solution under the sunlight. Nanorods Fe-doped TiO2 shows higher adsorption and also higher photocatalytic degradation of Congo red solution compared to pure nanorods TiO2 rutile. A higher activity is obtained when the amount of doped Fe is 2 at.%, compared to 3 at.%. However, nanorods V-TiO2 does not show neither adsorption nor photodegradation activity of Congo red solution.  相似文献   

5.
In this paper, Me double hydroxides (Me = Co and Ni)/TiO2 nanotube composites were synthesized by a simple chemical co-precipitation method. Electrochemical properties of the composites were examined by cyclic voltammetry, galvanostatic and impedance measurements. The highest specific capacitance values of 1053 F/g could be achieved with Me double hydroxides loaded on the TiO2 nanotube, which was comparable to that of hydrated ruthenium oxide.  相似文献   

6.
Phase equilibria and glass formation studies of the (1 − x)TeO2-xCdO system (0.05 ≤ x ≤ 0.33 mol) were realized by using differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The samples were prepared by applying a conventional melt-quenching technique at 800 °C. The glass formation range of the system was determined as 0.05 ≤ x < 0.15 and the sample containing 10 mol% CdO showed the highest glass stability. Crystallization behavior of the TeO2-CdO glasses was investigated and formation and/or transformation of different phases were detected for each crystallization reaction. In order to obtain thermal stability of the system, as-cast samples were heat-treated above all crystallization reaction temperatures at 550 °C for 24 h. A binary eutectic: liquid → TeO2 + CdTe2O5 was detected at 638 ± 4 °C. Crystallization behavior of the TeO2-CdO glasses and microstructural characterization of the TeO2-CdTe2O5 system was realized.  相似文献   

7.
J. Jiang 《Electrochimica acta》2005,50(24):4778-4783
Samples of the layered cathode materials, Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 (x = 1/12, 1/4, 5/12, and 1/2), were synthesized at 900 °C. Electrodes of these samples were charged in Li-ion coin cells to remove lithium. The charged electrode materials were rinsed to remove the electrolyte salt and then added, along with EC/DEC solvent or 1 M LiPF6 EC/DEC, to stainless steel accelerating rate calorimetry (ARC) sample holders that were then welded closed. The reactivity of the samples with electrolyte was probed at two states of charge. First, for samples charged to near 4.45 V and second, for samples charged to 4.8 V, corresponding to removal of all mobile lithium from the samples and also concomitant release of oxygen in a plateau near 4.5 V. Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples with x = 1/4, 5/12 and 1/2 charged to 4.45 V do not react appreciably till 190 °C in EC/DEC. Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples charged to 4.8 V versus Li, across the oxygen release plateau, start to significantly react with EC/DEC at about 130 °C. However, their high reactivity is similar to that of Li0.5CoO2 (4.2 V) with 1 μm particle size. Therefore, Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples showing specific capacity of up to 225 mAh/g may be acceptable for replacing LiCoO2 (145 mAh/g to 4.2 V) from a safety point of view, if their particle size is increased.  相似文献   

8.
Gang Wang  Yuqing Zha  Tong Ding 《Fuel》2010,89(9):2244-95
A series of high-temperature close coupled catalysts Pd/Ce-Zr-M/Al2O3 (M = Y, Ca or Ba) were prepared by ultrasonic-assisted successive impregnation. The catalysts were subjected to a series of characterization measurements. The results of activity evaluation show that Y is the best promoter for propane total oxidation, especially at the calcination temperature of 1100 °C. It is interesting that although the BET specific surface areas and the dispersion of Pd species decrease, the Y-promoted catalyst calcined at 1100 °C shows higher catalytic activity than the corresponding one calcined at 900 °C and better sulfur-resisting performance. The results of TEM, TPHD and CO chemisorption indicate that Y can remarkably increase the dispersion of Pd species. However, the dispersion is hard to be connected with the activity increase as the calcination temperature is elevated from 900 to 1100 °C. The change of active phases and the interaction between Pd species and the supports may account for the activity enhancement. Combined with XRD, H2-TPR and O2-TPD results, it is deduced that the coexistence of metallic Pd and PdO species in the catalysts calcined at 1100 °C may be also favorable to C3H8 oxidation. In a word, Pd/Ce-Zr-Y/Al2O3 is indeed a promising high-temperature close coupled catalyst applicable to high temperature.  相似文献   

9.
A carbon coated Li3V2(PO4)3 cathode material for lithium ion batteries was synthesized by a sol-gel method using V2O5, H2O2, NH4H2PO4, LiOH and citric acid as starting materials, and its physicochemical properties were investigated using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX), transmission electron microscope (TEM), and electrochemical methods. The sample prepared displays a monoclinic structure with a space group of P21/n, and its surface is covered with a rough and porous carbon layer. In the voltage range of 3.0-4.3 V, the Li3V2(PO4)3 electrode displays a large reversible capacity, good rate capability and excellent cyclic stability at both 25 and 55 °C. The largest reversible capacity of 130 mAh g−1 was obtained at 0.1C and 55 °C, nearly equivalent to the reversible cycling of two lithium ions per Li3V2(PO4)3 formula unit (133 mAh g−1). It was found that the increase in total carbon content can improve the discharge performance of the Li3V2(PO4)3 electrode. In the voltage range of 3.0-4.8 V, the extraction and reinsertion of the third lithium ion in the carbon coated Li3V2(PO4)3 host are almost reversible, exhibiting a reversible capacity of 177 mAh g−1 and good cyclic performance. The reasons for the excellent electrochemical performance of the carbon coated Li3V2(PO4)3 cathode material were also discussed.  相似文献   

10.
The melt-spinning technique is applied to the preparation of the nanocrystalline and amorphous Mg2Ni-type alloys with nominal compositions of Mg2Ni1−xMnx (x = 0, 0.1, 0.2, 0.3, 0.4). The as-spun alloy ribbons possessing a continuous length, a thickness of about 30 μm and a width of about 25 mm were prepared. The structures of the as-spun alloy ribbons are characterized by XRD and TEM. The electrochemical performances of the as-spun alloy ribbons are measured by an automatic galvanostatic system. The results show that no amorphous structure is detected in the as-spun Mg2Ni alloy, whereas the as-spun Mg2Ni0.6Mn0.4 alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Mn for Ni notably intensifies the amorphous forming ability of the Mg2Ni-type alloy. The amorphization degree of the as-spun alloys containing Mn increases with increasing spinning rate. The melt spinning also significantly enhances the electrochemical performances such as the discharge capacity and the electrochemical cycle stability of the Mn-containing alloys. Furthermore, the high rate dischargeability (HRD) of the (x ≤ 0.1) alloys increases with an increase in the spinning rate, while for the (x ≥ 0.2) alloys, the HRD exhibits a maximum value at a particular spinning rate, and it varies with the change in Mn contents of the alloys.  相似文献   

11.
To improve the cathodic performance of olivine-type LiMnPO4, we investigated the optimal annealing conditions for a composite of carbon with cation doping. Nanocrystalline and the cation-doped LiMn1−xMxPO4 (M = Ti, Mg, Zr and x = 0, 0.01, 0.05 and 0.10) was synthesized in aqueous solution using a planetary ball mill. The synthesis was performed at the fairly low temperature of 350 °C to limit particle size. The obtained samples except for the Zr doped one consisted of uniform and nano-sized particles. The performance of LiMnPO4 was much improved by an annealing treatment between 500 and 550 °C with carbon in an inert atmosphere. A small amount of metal-rich phosphide (Mn2P) was detected in the sample annealed at 900 °C. In addition, 1 at.% Mg doping for Fe enhanced the rate capability in our doped samples. The discharge capacity of LiMn0.99Mg0.01PO4/C was 146 mAh/g at 0.1 mA/cm2 and 125 mAh/g even at 2.0 mA/cm2.  相似文献   

12.
Several compositions of NdYb1−xGdxZr2O7 (0 ≤ x ≤ 1.0) ceramics were prepared by pressureless-sintering method at 1973 K for 10 h in air. The relative density, microstructure and electrical conductivity of NdYb1−xGdxZr2O7 ceramics were analyzed by the Archimedes method, X-ray diffraction, scanning electron microscopy and impedance plots measurements. NdYb1−xGdxZr2O7 (0 ≤ x ≤ 0.3) ceramics have a single phase of defect fluorite-type structure, and NdYb1−xGdxZr2O7 (0.7 ≤ x ≤ 1.0) ceramics exhibit a single phase of pyrochlore-type structure; however, the NdYb0.5Gd0.5Zr2O7 composition shows mixed phases of both defect fluorite-type and pyrochlore-type structures. The measured values of the grain conductivity obey the Arrhenius relation. The grain conductivity of each composition in NdYb1−xGdxZr2O7 ceramics gradually increases with increasing temperature from 673 to 1173 K. NdYb1−xGdxZr2O7 ceramics are oxide-ion conductor in the oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The highest grain conductivity value obtained in this work is 1.79 × 10−2 S cm−1 at 1173 K for NdYb0.3Gd0.7Zr2O7 composition.  相似文献   

13.
A series of Ni substituted spinel LiNixMn2−xO4 (0 ≤ x ≤ 0.5) have been synthesized to study the evolution of the local structure and their electrochemical properties. X-ray diffraction showed a few Ni cations moved to the 8a sites in heavily substituted LiNixMn2−xO4 (x ≥ 0.3). X-ray photoelectron spectroscopy confirmed Ni2+ cations were partially oxidized to Ni3+. The local structures of LiNixMn2−xO4 were studied by analyzing the and A1g Raman bands. The most compact [Mn(Ni)O6] octahedron with the highest bond energy of Mn(Ni)O was found for LiNi0.2Mn1.8O4, which showed a Mn(Ni)O average bond length of 1.790 Å, and a force constant of 2.966 N cm−1. Electrolyte decomposition during the electrochemical charging processes increased with Ni substitution. The discharge capacities at the 4.1 and 4.7 V plateaus obeyed the linear relationships with respect to the Ni substitution with the slopes of −1.9 and +1.9, which were smaller than the theoretical values of −2 and +2, respectively. The smaller slopes could be attributed to the electrochemical hysteresis and the presence of Ni3+ in the materials.  相似文献   

14.
The eutectic architecture of “in situ” composites prepared by solidification from the melt in the Al2O3-Ln2O3 (ZrO2) systems gives rise to materials with a high creep resistance. With the objective to elucidate the high temperature deformation micro-mechanisms, microstructural features are investigated on crept specimens. Compressive creep experiments have been carried out between 1400 and 1550 °C for various eutectic compositions. Different deformation regimes depending on considered systems and conditions of stress and temperature are revealed. Transmission electron microscopy studies emphasize the activation of different slip systems in the alumina phase and the deformation by dislocation climb processes controlled by bulk diffusion.  相似文献   

15.
LaNiO3 thin films were deposited on SrLaAlO4 (1 0 0) and SrLaAlO4 (0 0 1) single crystal substrates by a chemical solution deposition method and heat-treated in oxygen atmosphere at 700 °C in tube oven. Structural, morphological, and electrical properties of the LaNiO3 thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and electrical resistivity as temperature function (Hall measurements). The X-ray diffraction data indicated good crystallinity and a structural preferential orientation. The LaNiO3 thin films have a very flat surface and no droplet was found on their surfaces. Samples of LaNiO3 grown onto (1 0 0) and (0 0 1) oriented SrLaAlO4 single crystal substrates reveled average grain size by AFM approximately 15–30 nm and 20–35 nm, respectively. Transport characteristics observed were clearly dependent upon the substrate orientation which exhibited a metal-to-insulator transition. The underlying mechanism is a result of competition between the mobility edge and the Fermi energy through the occupation of electron states which in turn is controlled by the disorder level induced by different growth surfaces.  相似文献   

16.
La(1−x)SrxFeO3 (x = 0.2,0.4) powders were prepared by a stearic acid combustion method, and their phase structure and electrochemical properties were investigated systematically. X-ray diffraction (XRD) analysis shows that La(1−x)SrxFeO3 perovskite-type oxides consist of single-phase orthorhombic structure (x = 0.2) and rhombohedral one (x = 0.4), respectively. The electrochemical test shows that the reaction at La(1−x)SrxFeO3 oxide electrodes are reversible. The discharge capacities of La(1−x)SrxFeO3 oxide electrodes increase as the temperature rises. With the increase of the temperature from 298 K to 333 K, their initial discharge capacity mounts up from 324.4 mA h g−1 to 543.0 mA h g−1 (when x = 0.2) and from 147.0 mA h g−1 to 501.5 mA h g−1 (when x = 0.4) at the current density of 31.25 mA g−1, respectively. After 20 charge-discharge cycles, they still remain perovskite-type structure. Being similar to the relationship between the discharge capacity and the temperature, the electrochemical kinetic analysis indicates that the exchange current density and proton diffusion coefficient of La(1−x)SrxFeO3 oxide electrodes increase with the increase of the temperature. Compared with La0.8Sr0.2FeO3, La0.6Sr0.4FeO3 electrode is a more promising candidate for electrochemical hydrogen storage because of its higher cycle capacity at various temperatures.  相似文献   

17.
Cr-doped Li3V2−xCrx(PO4)3/C (x = 0, 0.05, 0.1, 0.2, 0.5, 1) compounds have been prepared using sol–gel method. The Rietveld refinement results indicate that single-phase Li3V2−xCrx(PO4)3/C with monoclinic structure can be obtained. Although the initial specific capacity decreased with Cr content at a lower current rate, both cycle performance and rate capability have excited improvement with moderate Cr-doping content in Li3V2−xCrx(PO4)3/C. Li3V1.9Cr0.1(PO4)3/C compound presents an initial capacity of 171.4 mAh g−1 and 78.6% capacity retention after 100 cycles at 0.2C rate. At 4C rate, the Li3V1.9Cr0.1(PO4)3/C can give an initial capacity of 130.2 mAh g−1 and 10.8% capacity loss after 100 cycles where the Li3V2(PO4)3/C presents the initial capacity of 127.4 mAh g−1 and capacity loss of 14.9%. Enhanced rate and cyclic capability may be attributed to the optimizing particle size, carbon coating quality, and structural stability during the proper amount of Cr-doping (x = 0.1) in V sites.  相似文献   

18.
Polyethylene glycol (PEG, mean molecular weight of 10,000) has been used to prepare a Li3V2(PO4)3/C cathode material by a simple solid-state reaction. The Raman spectra shows that the coating carbon has a good structure with a low ID/IG ratio. The images of SEM and TEM show that the carbon is dispersed between the Li3V2(PO4)3 particles, which improves the electrical contact between the corresponding particles. The electronic conductivity of Li3V2(PO4)3/C composite is 7.0 × 10−1 S/cm, increased by seven orders of magnitude compared with the pristine Li3V2(PO4)3 (2.3 × 10−8 S/cm). At a low discharge rate of 0.28C, the sample presents a high discharge capacity of 131.2 mAh/g, almost achieving the theoretical capacity (132 mAh/g) for the reversible cycling of two lithium. After 500 cycles, the discharge capacity is 123.9 mAh/g with only 5.6% fading of the initial specific capacity. The Li3V2(PO4)3/C material also exhibits an excellent rate capability with high discharge capacities of 115.2 mAh/g at 1C and 106.4 mAh/g at 5C.  相似文献   

19.
LiNiO2, LiNi0.995Al0.005O2, LiNi0.975Ga0.025O2, LiNi0.990Ti0.010O2 and LiNi0.990Al0.005Ti0.005O2 specimens were synthesized by preheating at 400 °C for 30 min in air and calcination at 750 °C for 36 h in an O2 stream. The variation of the discharge capacities with C-rate for the synthesized samples was investigated. LiNi0.990Al0.005Ti0.005O2 has the largest first discharge capacities at the 0.1 and 0.2 C rates. LiNi0.990Ti0.010O2 has the largest first discharge capacity at the 0.5 C rate. In case of LiNiO2 and LiNi0.990Ti0.010O2, the first discharge capacity decreases slowly as the C-rate increases. LiNiO2 has the largest discharge capacities at n = 10 (after stabilization of the cycling performance) at the 0.1, 0.2 and 0.5 C rates. This is considered to be related with the largest value of I0 0 3/I1 0 4 and the smallest value of R-factor (the least degree of cation mixing) among all the samples. LiNi0.975Ga0.025O2 exhibits the lowest discharge capacity degradation rates at 0.1, 0.2 and 0.5 C rates.  相似文献   

20.
Li2FeSiO4/carbon/carbon nano-tubes (Li2FeSiO4/C/CNTs) and Li2FeSiO4/carbon (Li2FeSiO4/C) composites were synthesized by a traditional solid-state reaction method and characterized comparatively by X-ray diffraction, scanning electron microscopy, BET surface area measurement, galvanostatic charge-discharge and AC impedance spectroscopy, respectively. The results revealed that the Li2FeSiO4/C/CNT composite exhibited much better rate performance in comparison with the Li2FeSiO4/C composite. At 0.2 C, 5 C and 10 C, the former composite electrode delivered a discharge capacity of 142 mAh g−1, 95 mAh g−1, 80 mAh g−1, respectively, and after 100 cycles at 1 C, the discharge capacity remained 95.1% of its initial value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号