首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A minus (respectively, signed) clique-transversal function of a graph G=(V,E) is a function (respectively, {−1,1}) such that uCf(u)?1 for every maximal clique C of G. The weight of a minus (respectively, signed) clique-transversal function of G is f(V)=vVf(v). The minus (respectively, signed) clique-transversal problem is to find a minus (respectively, signed) clique-transversal function of G of minimum weight. In this paper, we present a unified approach to these two problems on strongly chordal graphs. Notice that trees, block graphs, interval graphs, and directed path graphs are subclasses of strongly chordal graphs. We also prove that the signed clique-transversal problem is NP-complete for chordal graphs and planar graphs.  相似文献   

2.
A graph is H-free if it does not contain an induced subgraph isomorphic to the graph H. The graph Pk denotes a path on k vertices. The ?-Coloring problem is the problem to decide whether a graph can be colored with at most ? colors such that adjacent vertices receive different colors. We show that 4-Coloring is NP-complete for P8-free graphs. This improves a result of Le, Randerath, and Schiermeyer, who showed that 4-Coloring is NP-complete for P9-free graphs, and a result of Woeginger and Sgall, who showed that 5-Coloring is NP-complete for P8-free graphs. Additionally, we prove that the precoloring extension version of 4-Coloring is NP-complete for P7-free graphs, but that the precoloring extension version of 3-Coloring can be solved in polynomial time for (P2+P4)-free graphs, a subclass of P7-free graphs. Here P2+P4 denotes the disjoint union of a P2 and a P4. We denote the disjoint union of s copies of a P3 by sP3 and involve Ramsey numbers to prove that the precoloring extension version of 3-Coloring can be solved in polynomial time for sP3-free graphs for any fixed s. Combining our last two results with known results yields a complete complexity classification of (precoloring extension of) 3-Coloring for H-free graphs when H is a fixed graph on at most 6 vertices: the problem is polynomial-time solvable if H is a linear forest; otherwise it is NP-complete.  相似文献   

3.
In this paper we present unified methods to solve the minus and signed total domination problems for chordal bipartite graphs and trees in O(n2) and O(n+m) time, respectively. We also prove that the decision problem for the signed total domination problem on doubly chordal graphs is NP-complete. Note that bipartite permutation graphs, biconvex bipartite graphs, and convex bipartite graphs are subclasses of chordal bipartite graphs.  相似文献   

4.
Many NP-hard graph problems remain difficult on Pk-free graphs for certain values of k. Our goal is to distinguish subclasses of Pk-free graphs where several important graph problems can be solved in polynomial time. In particular, we show that the independent set problem is polynomial-time solvable in the class of (Pk,K1,n)-free graphs for any positive integers k and n, thereby generalizing several known results.  相似文献   

5.
In this paper, we first show how a certain ordering of vertices, called bicompatible elimination ordering (BCO), of a proper interval graph can be used to solve efficiently several problems in proper interval graphs. We, then, propose an NC parallel algorithm (i.e., polylogarithmic-time employing a polynomial number of processors) in SIMD CRCW PRAM (Single Instruction Stream Multiple Data Stream Concurrent Read Concurrent Write Parallel Random Access Machine) model of parallel computation to compute a BCO of a proper interval graph. To the best of our knowledge, this is the first NC parallel algorithm to compute a BCO of a proper interval graph.  相似文献   

6.
An old problem in graph theory is to characterize the graphs that admit two disjoint maximal independent sets.  相似文献   

7.
A graph G is the k-leaf power of a tree T if its vertices are leaves of T such that two vertices are adjacent in G if and only if their distance in T is at most k. Then T is the k-leaf root of G. This notion was introduced and studied by Nishimura, Ragde, and Thilikos motivated by the search for underlying phylogenetic trees. Their results imply a O(n3) time recognition algorithm for 3-leaf powers. Later, Dom, Guo, Hüffner, and Niedermeier characterized 3-leaf powers as the (bull, dart, gem)-free chordal graphs. We show that a connected graph is a 3-leaf power if and only if it results from substituting cliques into the vertices of a tree. This characterization is much simpler than the previous characterizations via critical cliques and forbidden induced subgraphs and also leads to linear time recognition of these graphs.  相似文献   

8.
The square H2 of a graph H is obtained from H by adding new edges between every two vertices having distance two in H. Lau and Corneil [Recognizing powers of proper interval, split and chordal graphs, SIAM J. Discrete Math. 18 (2004) 83-102] proved that recognizing squares of split graphs is an NP-complete problem. In contrast, we show that squares of strongly chordal split graphs can be recognized in quadratic-time by giving a structural characterization of these graph class.  相似文献   

9.
Given a class C of graphs, a graph G=(V,E) is said to be a C-probe graph if there exists a stable (i.e., independent) set of vertices XV and a set F of pairs of vertices of X such that the graph G=(V,EF) is in the class C. Recently, there has been increasing interest and research on a variety of C-probe graph classes, such as interval probe graphs, chordal probe graphs and chain probe graphs.In this paper we focus on chordal-bipartite probe graphs. We prove a structural result that if B is a bipartite graph with no chordless cycle of length strictly greater than 6, then B is chordal-bipartite probe if and only if a certain “enhanced” graph B is a chordal-bipartite graph. This theorem is analogous to a result on interval probe graphs in Zhang (1994) [18] and to one on chordal probe graphs in Golumbic and Lipshteyn (2004) [11].  相似文献   

10.
11.
The k-Leaf Power recognition problem is a particular case of graph power problems: For a given graph it asks whether there exists an unrooted tree—the k-leaf root—with leaves one-to-one labeled by the graph vertices and where the leaves have distance at most k iff their corresponding vertices in the graph are connected by an edge. Here we study "error correction" versions of k-Leaf Power recognition—that is, adding or deleting at most l edges to generate a graph that has a k-leaf root. We provide several NP-completeness results in this context, and we show that the NP-complete Closest 3-Leaf Power problem (the error correction version of 3-Leaf Power) is fixed-parameter tractable with respect to the number of edge modifications or vertex deletions in the given graph. Thus, we provide the seemingly first nontrivial positive algorithmic results in the field of error compensation for leaf power problems with k > 2. To this end, as a result of independent interest, we develop a forbidden subgraph characterization of graphs with 3-leaf roots.  相似文献   

12.
k-tuple domination in graphs   总被引:1,自引:0,他引:1  
In a graph G, a vertex is said to dominate itself and all of its neighbors. For a fixed positive integer k, the k-tuple domination problem is to find a minimum sized vertex subset in a graph such that every vertex in the graph is dominated by at least k vertices in this set. The current paper studies k-tuple domination in graphs from an algorithmic point of view. In particular, we give a linear-time algorithm for the k-tuple domination problem in strongly chordal graphs, which is a subclass of chordal graphs and includes trees, block graphs, interval graphs and directed path graphs. We also prove that the k-tuple domination problem is NP-complete for split graphs (a subclass of chordal graphs) and for bipartite graphs.  相似文献   

13.
On maximum induced matchings in bipartite graphs   总被引:1,自引:0,他引:1  
The problem of finding a maximum induced matching is known to be NP-hard in general bipartite graphs. We strengthen this result by reducing the problem to some special classes of bipartite graphs such as bipartite graphs with maximum degree 3 or C4-free bipartite graphs. On the other hand, we describe a new polynomially solvable case for the problem in bipartite graphs which deals with a generalization of bi-complement reducible graphs.  相似文献   

14.
2D electrophoresis is a well-known method for protein separation which is extremely useful in the field of proteomics. Each spot in the image represents a protein accumulation and the goal is to perform a differential analysis between pairs of images to study changes in protein content. It is thus necessary to register two images by finding spot correspondences. Although it may seem a simple task, generally, the manual processing of this kind of images is very cumbersome, especially when strong variations between corresponding sets of spots are expected (e.g. strong non-linear deformations and outliers). In order to solve this problem, this paper proposes a new quadratic assignment formulation together with a correspondence estimation algorithm based on graph matching which takes into account the structural information between the detected spots. Each image is represented by a graph and the task is to find a maximum common subgraph. Successful experimental results using real data are presented, including an extensive comparative performance evaluation with ground-truth data.  相似文献   

15.
In this paper we consider the vertex ranking problem of weighted trees. We show that this problem is strongly NP-hard. We also give a polynomial-time reduction from the problem of vertex ranking of weighted trees to the vertex ranking of (simple) chordal graphs, which proves that the latter problem is NP-hard. In this way we solve an open problem of Aspvall and Heggernes. We use this reduction and the algorithm of Bodlaender et al.'s for vertex ranking of partial k-trees to give an exact polynomial-time algorithm for vertex ranking of a tree with bounded and integer valued weight functions. This algorithm serves as a procedure in designing a PTAS for weighted vertex ranking problem of trees with bounded weight functions.  相似文献   

16.
The communication overhead is a major bottleneck for the execution of a process graph on a parallel computer system. In the case of two processors, the minimization of the communication can be modeled using the graph bisection problem. The spectral lower bound of λ2|V|/4 for the bisection width of a graph is widely known. The bisection width is equal to λ2|V|/4 iff all vertices are incident to λ2/2 cut edges in every optimal bisection.

We present a new method of obtaining tighter lower bounds on the bisection width. This method makes use of the level structure defined by the bisection. We define some global expansion properties and we show that the spectral lower bound increases with this global expansion. Under certain conditions we obtain a lower bound depending on λ2β|V| with . We also present examples of graphs for which our new bounds are tight up to a constant factor. As a by-product, we derive new lower bounds for the bisection widths of 3- and 4-regular Ramanujan graphs.  相似文献   


17.
Many questions regarding the Tower of Hanoi problem have been posed and answered during the years. Variants of the classical puzzle, such as allowing more than 3 pegs, and imposing limitations on the possible moves among the pegs, raised the analogous questions for those variants. One such question is: given a variant, and a certain number of disks, find a pair of disk arrangements such that the minimal number of moves required for changing from the first to the second is maximal over all pairs. One of the main results of the paper is identifying these for the Cyclich variants—the variants with h pegs arranged along a uni-directional circle—to be the pairs of perfect configurations where the destination peg is right before the source peg.  相似文献   

18.
The class of bipartite permutation graphs is the intersection of two well known graph classes: bipartite graphs and permutation graphs. A complete bipartite decomposition of a bipartite permutation graph is proposed in this note. The decomposition gives a linear structure of bipartite permutation graphs, and it can be obtained in O(n) time, where n is the number of vertices. As an application of the decomposition, we show an O(n) time and space algorithm for finding a longest path in a bipartite permutation graph.  相似文献   

19.
20.
Let c be a proper edge coloring of a graph G. If there exists no bicolored cycle in G with respect to c, then c is called an acyclic edge coloring of G. Let G be a planar graph with maximum degree Δ and girth g. In Dong and Xu (2010) [8], Dong and Xu proved that G admits an acyclic edge coloring with Δ(G) colors if Δ?8 and g?7, or Δ?6 and g?8, or Δ?5 and g?9, or Δ?4 and g?10, or Δ?3 and g?14. In this note, we fix a small gap in the proof of Dong and Xu (2010) [8], and generalize the above results to toroidal graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号