首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
超临界二氧化碳流动和换热研究进展   总被引:12,自引:0,他引:12  
综述了国际上对超临界二氧化碳管内换热和压降特征的研究。提供了多种公开发表的超临界流体在冷却工况下的换热关联式及单相压降关联式,将实验关联式的计算结果与文献中的实验数据进行对照,在此基础上对关联式的准确性进行了讨论。同时指出了现有研究内容的不足。  相似文献   

2.
通过对超临界二氧化碳管内流动及换热特性研究现状和分析方法介绍,列出常用的超临界二氧化碳在不同条件下的传热和压降关联式,进一步说明自然工质二氧化碳的跨临界循环特点和所具有的独特的热物理性质,指明超临界二氧化碳的利用和新型换热设备的研发方向。  相似文献   

3.
亚临界二氧化碳换热特性研究进展   总被引:3,自引:1,他引:3  
综述了国际上对亚临界二氧化碳管内换热特征的研究。提供了多种公开发表的亚临界流体在管内流动的换热关联式,并将实验关联式的计算结果与文献中的实验数据进行对照,在此基础上对关联式的准确性进行了讨论,并推荐了不同工况下适用的关联式。  相似文献   

4.
成赫  巨永林  傅允准 《制冷学报》2020,41(6):133-139
目前国内外对液化天然气(LNG)接收站的开架式气化器中超临界天然气的流动换热实验研究非常少,本文为了研究开架式气化器中竖直管内超临界流体的流动换热特性,搭建了竖直单管超临界流体换热实验平台。以液氮代替液化天然气,研究了氮入口压力、水温和水流量等不同参数对换热的影响。结果表明:在拟临界温度以下,表面传热系数随着压力的增大逐渐减小,但拟临界温度以后,这种趋势相反;当水流量足够大时,氮出口温度取决于管外水温而不是水侧流量。最后,基于实验数据拟合出了适用于竖直圆管内超临界低温流体流动换热的半经验关联式,关联式预测值和实验值的平均绝对偏差为8.42%,可以准确预测竖直加热管中超临界氮的表面传热系数。  相似文献   

5.
对超临界CO2在水平等边三角细微管内层流流动与换热进行了数值模拟。给出了冷却条件下,细微管(d=0.5mm)内有代表性的速度、温度剖面,Nusselt数随流体温度的变化,以及管壁面上Nusselt数的分布。研究表明,流体剧烈变化的热物性、浮升力以及三角管的几何特征对管内流动换热的影响非常明显。研究结果对超临界二氧化碳高效紧凑式换热器的设计与优化有重要的意义。  相似文献   

6.
超临界二氧化碳微细管内冷却换热研究   总被引:1,自引:1,他引:0  
对超临界二氧化碳在微细竖直圆管内冷却条件下的对流换热进行了数值模拟研究,分析了不同管径、进口雷诺数及不同的热流率对超临界二氧化碳对流换热的影响,考察管内局部流体温度、湍动能、湍流雷诺数的变化。湍流模型采用低雷诺数YS模型。研究表明,在临界温度区域比较大的截面,超临界二氧化碳局部传热系数达到最大值,同时管内传热受湍流雷诺数影响较大。  相似文献   

7.
CO2在超临界条件下流动换热的实验研究   总被引:1,自引:0,他引:1  
付萌  吕静  秦娜 《制冷》2007,26(1):14-17
本文对超临界CO2在水平管内和水交叉流动的换热特性进行了实验研究,通过实验结果表明,CO2热流密度和质量流量的变化均对换热性能产生一定的影响。并且分析了其Re、Pr和Nu数的变化特性。以此为基础,为气体冷却器的设计提供了理论依据。  相似文献   

8.
对弯折型、旋转型两种节流阀进行数值模拟,研究不同工质下节流阀的温降以及流量特性,结果发现与液氮与液氧相比,甲烷在节流阀内的空化更为严重,汽相出现的较早,汽液分布较为混乱.搭建低温节流阀流动换热实验台,以液氮和甲烷为实验工质研究不同工况下的节流阀的流动特性,将进口过冷度作为影响因素提出新的质量流量关联式,可以准确预测节流...  相似文献   

9.
超临界CO2的流动换热性能是影响空气冷却器效率的关键因素。对超临界CO2在套管内的流动换热特性进行实验研究,探讨人口压力、质量流量、冷却水流量等参数的变化对超临界CO2在套管内的换热性能和压降所带来的影响,有助于进一步了解超临界CO2在气体冷却器中流动和换热规律,从而优化换热器设计。  相似文献   

10.
采用薄壁不锈钢管,用高粘幂律流体进行了垂直向下流动沸腾临界热流实验研究,建立了临界热流关联式。  相似文献   

11.
针对风冷和水冷联合冷却的竖管降膜吸收器,考虑汽液界面的阻力、变膜厚、横向对流和冷却水的冷却作用的影响,建立了降膜吸收过程中热质耦合数学模型和同心管环空内冷却水换热数学模型.计算了沿竖管内表面的液膜厚度、温度、浓度以及冷却水在混合冷却条件下的温度分布等参数.分析了冷却水进口温度、LiBr溶液Re数和PE数等参数对传热系数和吸收速率的影响.数学模型的计算结果与实验数据吻合较好.得出的结论对联合冷却吸收器的设计和优化具有指导意义.  相似文献   

12.
A plate-type evaporator, working with natural refrigerant circulation, has been investigated both experimentally and theoretically. Motivated by the phase-out of ozone-depleting substances, HCFC22 was compared to HFC134a and two zeotropic refrigerant mixtures. The effect of different separator liquid levels, i.e. refrigerant flows, and its influence on heat transfer was also studied. The investigated plate-type evaporator consists of thirteen vertical flow channels and its size is 3.0 m × 0.5 m. The heat source for the evaporator is a falling water film on the outside of the plate. Experimental studies have been carried out using a test facility that enabled detailed measurements of heat transfer and pressure drop. Experiments were compared to results from a calculation method that simultaneously calculates heat transfer and pressure drop in a variable number of steps along the evaporator. The calculation method is based on a pressure drop correlation proposed by the VDI-Wärmeatlas and a heat transfer correlation for vertical tubes proposed by Steiner and Taborek. For different evaporator duties, heat transfer was over predicted by 12% for pure fluids by 15% for mixtures. Calculated pressure drops were well within ±5% of the measured values. Changes in heat transfer due to different flows were closely predicted by the proposed calculation method.  相似文献   

13.
An experimental investigation is performed of heat transfer under conditions of flow of a water film on a vertical surface with a heater 150×150 mm in size in the range of the Reynolds number values from 1 to 45. A map of modes of flow of the liquid film is plotted, and regions of heat transfer are identified. Data are obtained on the longitudinal coordinate dependence of the heater wall temperature and of the local heat flux on the symmetry axis of the heater. Local coefficients of heat transfer are measured. The experimental data are compared with the results of numerical calculations for a smooth film. The effect of the forming of jet flows on heat transfer to the liquid film is analyzed.  相似文献   

14.
Heat transfer from inner side of a heated vertical pipe to liquid hydrogen flowing upward was first measured at the pressure of 0.7 MPa for wide ranges of flow rates and liquid temperatures. The heat transfer coefficients in non-boiling regime for each flow velocity were well in agreement with the Dittus–Boelter equation. The heat fluxes at the inception of boiling and the departure from nucleate boiling (DNB) heat fluxes are higher for higher flow velocity and subcooling. It was found that the trend of dependence of the DNB heat flux on flow velocity was expressed by the correlation derived by Hata et al. based on their data for subcooled flow boiling of water, although it has different propensity to subcooling.  相似文献   

15.
Heat Transfer from a Local Heat Source to Subcooled Liquid Film   总被引:5,自引:0,他引:5  
An experimental investigation is performed of heat transfer from a local heat source to films of water and low-boiling dielectric liquid that flow down a vertical plate by gravity. The liquids are substantially subcooled. In the case of perfluorotriethylamine flow, regular structures are formed in the film at the threshold value of the heat flux density. After the heated layer of liquid comes to the film surface, three characteristic modes of heat transfer are observed, which are associated with the variation of the modes of liquid flow caused by thermocapillary convection. At low values of the Reynolds number of the film, a specific form of critical heat transfer is observed, which is characterized by disintegration of the jet into droplets and their separation from the heater.  相似文献   

16.
Heat and mass transfer in a falling film vertical in-tube absorber was studied experimentally with LiBr aqueous solution. The presented results include the effect of solution flow rate, solution subcooling and cooling water temperature on the absorption in a smooth copper tube 16.05 mm I.D. and 400 mm long. The experimental data in the previous report for a 1200-mm-long tube was also re-examined and compared. It was demonstrated by the observation of the flow in the tube that the break down of the liquid film into rivulets leads to deterioration of heat and mass transfer at lower film Reynolds number or in longer tubes. An attempt to evaluate physically acceptable heat and mass transfer coefficients that are defined with estimated temperature and concentration at the vapor–liquid interface was also presented.  相似文献   

17.
Abstract

A numerical analysis has been performed to examine film evaporation on natural convection heat and mass transfer in a vertical pipe. Coupled governing equations for liquid film and induced gas flow were simultaneously solved by the implicit finite difference method. Results for interfacial heat and mass transfer coefficients are specifically presented for ethanol film and water film vaporization. The predicted results indicate that the heat transfer from gas‐liquid interface to the gas flow is predominated by the transport of latent heat in association with film evaporation. The results are also contrasted with those of zero film thickness and show that the assumption of extremely thin film thickness made by Chang et al. [5] and Yan and Lin [19] is only valid for a system with a low liquid Reynolds number Re l1. But as the liquid Reynolds number is high, the assumption becomes inappropriate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号