首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of ZnO thin films were deposited on silicon (100) substrate at 473 K by using facing target RF magnetron sputtering system at different oxygen pressure in this paper. The structure, surface morphology and photoluminescence of the ZnO thin films were characterized by X-ray diffraction, atomic force microscopy (AFM), and photoluminescence spectra (PL), respectively. The results showed that only a (002) peak of hexagonal wurtzite appeared in all ZnO thin films, indicating that ZnO films exhibited strong texture. With increasing the oxygen pressure, the results indicated that the ZnO film deposited at 1.2 Pa Ar pressure and 0.6 Pa oxygen pressure had the best preferential C-axis orientation and the weakest compressive stress. Meanwhile, AFM observation showed that ZnO film deposited at pure Ar had the highest surface roughness. With the increment of oxygen pressure, the surface roughness decreased gradually. In addition, PL measurement showed that the ZnO film deposited at 1.2 Pa Ar pressure and 0.6 Pa oxygen pressure had the strongest ultraviolet emission and the weakest blue emission.  相似文献   

2.
ZnO thin films with different buffer layer thicknesses were grown on Si and porous silicon (PS) by plasma-assisted molecular beam epitaxy (PA-MBE). The effects of PS and buffer layer thickness on the structural and optical properties of ZnO thin films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL). The ZnO buffer layers, the intensity of the (002) diffraction peak for the ZnO thin films and its full width at half maximum (FWHM) decreased with an increase in the thickness of the ZnO buffer layers, indicating an improvement in the crystal quality of the films. On introducing PS as a substrate, the grain sizes of the ZnO thin films became larger and their residual stress could be relaxed compared with the ZnO thin films grown on Si. The intensity ratio of the ultraviolet (UV) to visible emission peak in the PL spectra of the ZnO thin films increased with an increase in buffer layer thickness. Stronger and narrower UV emission peaks were observed for ZnO thin films grown on PS. Their structural and optical properties were enhanced by increasing the buffer layer thickness. In addition, introduction of PS as a substrate enhanced the structural and optical properties of the ZnO thin films and also suppressed Fabry-Perot interference.  相似文献   

3.
Highly oriented zinc oxide thin films have been grown on quartz, Si (1 1 1) and sapphire substrates by pulsed laser deposition (PLD). The effect of temperature and substrate parameter on structural and optical properties of ZnO thin films has been characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), optical transmission spectra and PL spectra. The experimental results show that the best crystalline thin films grown on different substrate with hexagonal wurtzite structure were achieved at growth temperature 400–500 °C. The growth temperature of ZnO thin film deposited on Si (1 1 1) substrate is lower than that of sapphire and quartz. The band gaps are increasing from 3.2 to 3.31 eV for ZnO thin film fabricated on quartz substrate at growth temperature from 100 to 600 °C. The crystalline quality and UV emission of ZnO thin film grown on sapphire substrate are significantly higher than those of other ZnO thin films grown on different substrates.  相似文献   

4.
The structure, morphology, and properties of ZnO films were examined in relation to an annealed sapphire substrate prepared via pulsed laser deposition. The annealing effects of the sapphire substrate on the ZnO films were studied via X-ray diffraction (XRD), atomic-force microscopy (AFM), and photoluminescence (PL) measurements. The XRD patterns and PL spectra results showed that the optical quality of the ZnO films was significantly affected by the annealing temperature of the sapphire substrate. The optimum annealing temperature of the sapphire substrate was 1400 degrees C. Atomically-flat-surface and high-density atomic steps were formed after annealing treatment, which were qualified to be good nucleation sites for ZnO film growth.  相似文献   

5.
ZnO thin films were prepared on quartz glass, Si (100), and sapphire (001) substrates by a chemical vapour transport (CVT) technique. During the growing processes, the source and substrate temperatures were maintained at 1000 °C and 600 °C, respectively. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurements showed that the crystalline qualities of ZnO thin films were sensitively dependent on substrates. ZnO thin film deposited on sapphire substrate exhibited the best morphology with the largest crystallite size of more than 20 μm. Meanwhile, the XRD patterns showed that ZnO thin film deposited on sapphire substrate was strongly c-axis preferred-oriented with high crystalline quality. The optical properties of ZnO thin films were investigated by photoluminescence (PL) spectroscopy at room temperature (RT). The results suggested that the optical properties of ZnO thin films were highly influenced by their crystalline qualities and surface morphologies.  相似文献   

6.
Cu-doped zinc oxide (ZnO:Cu) films were deposited on Si substrates using radio frequency reactive magnetron sputtering at different oxygen partial pressures. The effect of oxygen partial pressure on the microstructures and optical properties of ZnO:Cu thin films were systematically investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and fluorescence spectrophotometer. The results indicated that the grain orientation of the films was promoted by appropriate oxygen partial pressures. And with increasing oxygen partial pressure, the compressive stress of the films increased first and then decreased. The photoluminescence (PL) of the samples were measured at room temperature. A violet peak, two blue peaks and a green peak were observed from the PL spectra of the four samples. The origin of these emissions was discussed and the mechanism of violet emission of ZnO:Cu thin films were suggested.  相似文献   

7.
Abstract

Zinc oxide (ZnO) nano thin films have been deposited by the chemical double-dip technique using aqueous ZnSO4 and NaOH solutions. The ZnO films were characterized in terms of surface morphology by x-ray diffraction, energy-dispersive x-ray analysis (EDX), the use of a scanning electron microscope (SEM) and atomic force microscope (AFM) for surface morphology. The films exhibited a smooth morphology. The chemical states of oxygen and zinc in the ZnO nano thin films were also investigated by x-ray photoelectron spectroscopy (XPS). In the present investigations, highly textured ZnO thin films with a preferential (002)-orientation were prepared on glass substrates. The deposition conditions were optimized to obtain device-quality films for practical applications.  相似文献   

8.
《Materials Letters》2003,57(26-27):4187-4190
Structural and optical properties of ZnO films grown on Al substrate and anodic alumina oxide (AAO) templates by rf magnetron reactive sputtering deposition were investigated using X-ray diffraction (XRD), atomic-force microscope (AFM) and photoluminescence (PL). We found that ZnO thin films on Al substrate show good C-axis orientation, while the orientation of ZnO film on AAO templates is disordered, this due to the fact that the crystalline of ZnO is greatly influenced by surface morphology of substrates. PL measurements show a blue band in the wavelength range of 400–500 nm caused by the interstitial Zn in the ZnO films. The intensity of emission peak of ZnO films deposited on AAO templates increases compared with that on the Al substrate. Combining electrical resistivity and carrier concentration measurements, we found that that the blue emission intensity is consistent with the concentration for the interstitial zinc in the ZnO films.  相似文献   

9.
Highly c-axis oriented ZnO thin films were grown on Si (100) substrates with Zn buffer layers. Effects of the Zn buffer layer thickness on the structural and optical qualities of ZnO thin films were investigated for the ZnO films with the buffer layers 90, 110, and 130 nm thick using X-ray diffraction (XRD), photoluminescence (PL) and atomic force microscopy (AFM) analysis techniques. It was confirmed that the quality of a ZnO thin film deposited by RF magnetron sputtering was substantially improved by using a Zn buffer layer. The highest ZnO film quality was obtained with a Zn buffer layer 110 nm thick. The surface roughness of the ZnO thin film increases as the Zn buffer layer thickness increases.  相似文献   

10.
Sapphire (alpha-Al2O3) is an important ceramic material that is widely used in substrate material for electronics. We investigate the chemical reaction layer on a sapphire wafer using X-ray photoelectron microscopy (XPS) and atomic force microscopy (AFM). The frictional characteristics of sapphire chemical mechanical polishing (CMP) was studied using in-situ friction force monitoring system. From XPS analysis and AFM experiment, a chemically-reacted layer was verified on the sapphire surface through a chemical reaction between the sapphire and chemicals in a slurry. During sapphire CMP, the friction force mainly depended on the applied pressure. The material removal efficiency per unit friction energy in sapphire CMP was 6.18 nm/kJ.  相似文献   

11.
ZnO thin films with ZnO buffer layers were grown by plasma-assisted molecular beam epitaxy (PA-MBE) on p-type Si(100) substrates. Before the growth of the ZnO thin films, the ZnO buffer layers were deposited on the Si substrates for 20 minutes and then annealed at the different substrate temperature ranging from 600 to 800 degrees C in oxygen plasma. The structural and optical properties of the ZnO thin films have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and room-temperature (RT) photoluminescence (PL). A narrower full width at half maximum (FWHM) of the XRD spectra for ZnO(002) and a larger grain are observed in the samples with the thermal annealed buffer layers in oxygen plasma, compared to those of the as-grown sample. The surface morphology of the samples is changed from rugged to flat surface. In the PL spectra, near-band edge emission (NBEE) at 3.2 eV (380 nm) and deep-level emission (DLE) around 1.77 to 2.75 eV (700 to 450 nm) are observed. By increasing the annealing temperatures up to 800 degrees C, the PL intensity of the NBEE peak is higher than that of the as-grown sample. These results imply that the structural and optical properties of ZnO thin films are improved by the annealing process.  相似文献   

12.
ZnO:Cu and ZnS thin films were grown by metal-organic chemical vapour deposition (MOCVD) under atmospheric pressure onto glass substrates. The ZnO:Ag films were fabricated from ZnS films by non-vacuum method that consists of simultaneous oxidation and Ag-doping by the close spaced evaporation (CSE) of silver at the temperature of 500–600 °C. Photo-assisted rapid thermal annealing (PARTA) at ambient air during 10–30 s at the temperature of 700–800 °C was used for the ZnO:Cu films. The samples were studied by X-ray diffraction technique (XRD), atomic force microscopy (AFM), and photoluminescence (PL) measurements. The grain size of ZnO:Cu films increased with an increase of Cu concentration. PL spectra of as-deposited ZnO:Cu films depended on Cu concentration and contained the bands typical for the copper. After PARTA at high temperature the emission maximum shifted towards the short-wave region. During the fabrication of ZnO:Ag films the grain growth process was strongly affected by the Ag loading level. The grain size increased with an increase of Ag concentration and ZnO:Ag films with surface roughness of 8 nm were obtained. Observed 385 nm PL peak for these samples can be attributed to the exciton–exciton emission that proves the high quality of the obtained ZnO:Ag films.  相似文献   

13.
RF溅射稀土掺杂ZnO薄膜的结构与发光特性   总被引:1,自引:1,他引:0  
文军  陈长乐 《光电工程》2008,35(8):124-127
通过射频磁控溅射技术在Si(111)衬底上制备了未掺杂和La、Nd掺杂ZnO薄膜.XRD分析表明,ZnO薄膜具有c轴择优生长,La、Nd掺杂ZnO薄膜为纳米多晶薄膜.AFM观测,La、Nd掺杂ZnO薄膜表面形貌较为粗糙.从薄膜的室温光致光谱中看到,所有薄膜都出现了395 nm的强紫光峰和495 nm的弱绿光峰,La掺杂ZnO薄膜的峰强度增大,Nd掺杂ZnO薄膜的峰强度减弱,分析了掺杂引起PL峰强度变化的原因.  相似文献   

14.
In the present work, we have illustrated a new idea of codoping in ZnO with AlN as codopant to achieve p-ZnO. ZnO films doped with different concentrations of AlN were grown by RF magnetron sputtering. The AlN doped ZnO (ANZO) films grown on sapphire substrate were subjected to X-ray diffraction (XRD), reflectance measurements, Hall measurements, atomic force microscopy (AFM) and energy dispersive spectroscopy (EDS) analysis. XRD analysis reveals that all films have grown in the form of hexagonal wurtzite structure with (002) preferential orientation. The FWHM of (002) peak decreases till 1 mol% of AlN and increases for further addition of AlN indicating the incorporation of more impurities (dopants). The reflectance measurements suggest that the reflectance decreases at lower concentration and increases above 1 mol% of AlN in the visible region ranging from 400 to 800 nm. Hall measurements show that all the films are n-type. The electron concentration increases initially and then decreases for further addition of AlN (>1 mol%) suggesting the incorporation of nitrogen into the film at higher concentrations of AlN. The presence of N in the films is further confirmed by EDS analysis. The rms surface roughness measured by AFM decreases exponentially with dopant concentration. The figure of merit increases upon codoping with AlN.  相似文献   

15.
Zn(1 − x)CdxO solid solutions with a composition ranging from pure ZnO up to x = 0.062 have been grown on ZnO and c-plane sapphire substrates by using metal organic chemical vapor deposition. The optical transmission spectra were used to estimate the cadmium mole fraction of the solid solutions. The lattice deformation and morphology of these films were examined in detail using high resolution X-ray diffraction and atomic force microscopy as Cd incorporation and used substrate. Our study reveals significant lattice deformation from x ≥ 0.7%. The atomic force microscopy images show facetted grains for films grown on ZnO substrate but rather round for c-plane sapphire substrate. The grain shape is controlled by the presence of the ionic charges on the polar surface of ZnO which is disturbed by cadmium incorporation and also the employed substrate material.  相似文献   

16.
ZnO films were deposited on MgO substrates (ZnO/MgO) by ultrasonic spray pyrolysis. Substrate temperature varied from 200 to 350°C. The crystallographic properties and surface morphologies of the ZnO/MgO films were studied by X-ray diffraction and scanning electron microscopy. The properties of photoluminescence (PL) for the films were investigated by dependence of PL spectra on the substrate temperature and the ambient temperature. Ultraviolet (UV) emission peak (3.37 eV) was dominantly detected at 18 K, which sustained at 300 K with a reduced value of the peak energy. The ZnO/MgO films prepared at 350°C showed the strongest UV emission peak at 18 and 300 K among the films in this study.  相似文献   

17.
使用纳米金刚石粉研磨工艺预处理硅片衬底抛光面,在低气压成核的条件下,以丙酮和氢气为反应物,采用传统的热丝辅助化学气相沉积法,制备了自支撑金刚石膜;通过射频磁控溅射法沉积氧化锌薄膜在自支撑金刚石膜的成核面,形成氧化锌/自支撑金刚石膜结构.通过光学显微镜、扫描电镜及原子力显微镜测试自支撑金刚石膜成核面的表面形貌.研究结果表明:成核期的低气压有助于提高成核密度,成核面表面粗糙度约为1.5 nm;拉曼光谱显示1334 cm-1附近尖锐的散射峰与金刚石SP3键相对应,成核面含有少量的石墨相,且受到压应力的作用;ZnO/自支撑金刚石膜结构的XRD谱显示,氧化锌薄膜有尖锐的(002)面衍射峰,是c轴择优取向生长的.  相似文献   

18.
《Materials Letters》2007,61(8-9):1763-1766
ZnO films deposited on glass, quartz and Al on silicon mono-crystal Si (100) substrates by using the wire explosion technique were investigated by X-ray diffraction (XRD), UV–VIS spectroscopy, scanning electron (SEM) and atomic force microscopy (AFM) measurements. X-ray diffraction measurements have shown that ZnO films are mainly composed of (100), (002) and (101) orientation crystallites. The post-deposition thermal treatment at 600 °C temperature in air has shown that the composite of Zn/ZnO film was fully oxidized to ZnO film. The XRD spectra of the film deposited in oxygen atmosphere at room temperature present high intensity dominating peak at 2h = 36, 32° corresponding to the (101) ZnO diffraction peak. The small fraction of the film (7%) corresponds to the (002) peak intensity at 2h = 34, 42°. This result indicates the good crystal quality of the film and hexagonal wurtzite-type structure deposited by zinc wire explosion. The optical absorption spectra shows the bands at 374, 373 and 371 nm corresponding to deposition conditions. The SEM analysis shows that ZnO films presented different morphologies from fractal network to porous films depending on deposition conditions. AFM analysis revealed the grain size ranges from 50 nm to 500 nm. The nanoneedles up to 300 nm in length were found as typical structures in the film. It was demonstrated that the wire explosion technique is a feasible method to produce ZnO crystalline thin films and nanostructures.  相似文献   

19.
S.H. Seo 《Thin solid films》2010,518(18):5164-5168
Epitaxial ZnO thin films were deposited by radio-frequency sputtering. In contrast to typical sputter growth, in which a ZnO sintered target was used, raw ZnO powder with a particle size smaller than 1 μm is used as the source material. In order to verify this approach, ZnO thin films were deposited on sapphire(0001) substrates and characterized by X-ray diffraction, atomic force microscopy, ultraviolet-visible-near-infrared (near-IR) transmission spectroscopy, and photoluminescence spectroscopy. The as-deposited ZnO thin films grew epitaxially on the sapphire(0001) substrate. A crossover in the growth mode from an initial 2-dimensional planar layer to later 3-dimensional islands was observed, which is consistent with the results obtained using a ZnO sintered target. The ZnO films showed band-edge emission with a bandgap energy of 3.27 eV and a high optical transmittance > 80% from visible to near-IR region. This shows that ZnO powder targets can be an alternative to relatively expensive sintered ones in the fabrication of ZnO nano-structures and doped ZnO.  相似文献   

20.
The surface polishing for silicon carbide (SIC) substrates was investigated and results were presented for mechanical polishing (MP) and chemo-mechanical polishing (CMP). High quality surfaces were obtained after CMP with colloidal silica. The removal mechanism of scratches in MP and detailed physical and chemical process during CMP were analyzed. The effects of MP and CMP on the surface roughness were assessed by optical microscopy (OM), atomic force microscopy (AFM) and step profilometry. KOH etching and high resolution X-ray diffractometry (H RXRD) were applied to evaluate the subsurface damage of 6H-SiC substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号