首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用Deform-3D有限元软件对铜铝双金属复合棒材室温4道次BC路径ECAE变形过程进行模拟,研究了金属流动、挤压载荷、等效应变以及平均应力的分布及变化规律;并在自行设计的模具上进行了试验验证,成功制备出铜铝双金属复合棒材,对变形材料进行了物理网格试验及组织性能测试。结果表明,ECAE工艺下铜铝双金属复合棒材内部存在剧烈剪切变形区,复合坯料由不稳定变形逐渐过渡为均匀协调变形,材料内部处于理想的三向压应力状态,静水压力较高,界面处金属结合紧密。4道次ECAE挤压后,铜铝双金属复合坯料整体变形相对均匀,平均累积等效应变量为4.49。随着挤压道次的增加,载荷峰值不断增加,同时复合坯料内部显微硬度不断升高,但包覆层增幅大于芯部材料。  相似文献   

2.
对纯铝进行等径角挤压、等径角挤压结合不同挤压比直接挤压及直接挤压,并采用刚-粘塑性3D有限元模拟进行分析。利用3D有限元模拟研究不同成形过程变形Al-1080的载荷-位移行为、塑性变形特征和有效塑性应变均匀性。用显微组织观察、显微硬度分布图、有效塑性应变和显微硬度值验证模拟结果。结果表明:模拟结果与实验结果一致;模拟载荷-位移曲线和最大载荷与实验结果接近;显微硬度分布图符合有效塑性应变等高线,证实了3D有限元模拟结果。等径角挤压工件的变形均匀性程度比其他变形过程的高。根据平均有效塑性应变计算了显微硬度值。预测显微硬度值与实验结果吻合。横向和纵向显微组织观察验证了不同成形过程中3D有限元模拟有效塑性应变和显微硬度分布结果。  相似文献   

3.
采用3D有限元模拟、实验研究和理论分析,并在与传统等径角挤压工艺对比基础上,系统研究挤扭成形对等径角挤扭工艺固结纯铝粉末-包套过程的影响。模拟结果表明,在等径角挤扭法固结纯铝粉末-包套过程中,挤扭成形起反向背压作用,螺旋通道所提供的旋转剪切变形和高静水压力可大幅增加材料内部的塑性剪切应变,显著改善变形坯料的变形均匀性。在内角为90°、螺旋角为36.5°的方形截面通道模具上,经200℃下1道次等径角挤扭变形实验,成功将纯铝粉末颗粒固结为近致密的块体材料。有限元模拟与实验结果具有较好的一致性。显微组织观察和硬度测试实验结果表明,等径角挤扭法固结的块体材料晶粒更加细小,孔隙得到有效收缩焊合,组织性能均匀性更好。这是由于在等径角挤扭变形过程中剧烈剪切应变大大增加,同时挤扭成形所起的反向背压作用有效提高了Al原子的自扩散系数。  相似文献   

4.
应用Deform-3D软件,对6061铝合金的等径角挤压过程进行了数值模拟,研究了摩擦对挤压过程的影响,并分析了挤压过程中挤压力的变化以及应力和应变的分布情况。等径角挤压试验在1000kN压力机上进行,测定了实际挤压载荷,并采用不同的润滑剂对摩擦的影响进行了研究。结果表明,6061铝合金的等径角挤压变形过程中应力和应变呈不均匀分布,摩擦对挤压过程有着重要的影响。摩擦因数越大,挤压力越大,变形越不均匀。另外,对模拟结果进行了试验验证,结果基本一致。  相似文献   

5.
在室温下,采用等径角挤压法加工纯铝样品10道次。研究等径角挤压道次数对加工样品显微组织演变、力学性能、变形均匀性和腐蚀行为的影响。所施加的应变导致晶粒尺寸明显减小,等径角挤压前,晶粒尺寸为390μm,经等径角挤压2、4和10道次后,晶粒尺寸分别减小至1.8、0.4和0.3μm。随着等径角挤压道次数的增加,显微硬度、变形均匀性和拉伸强度增大,而伸长率下降。浸泡试验、开路电势、Tafel极化、循环极化和恒电位测试表明,与铸态样品相比,在3.5%Na Cl溶液中,经等径角挤压样品的耐蚀性明显提高。增加挤压道次数能成功用来生产具有高错位角、高力学性能和耐蚀性的超细晶大块纯铝。  相似文献   

6.
采用DEFORM-3D软件对纯钼粉末多孔烧结材料等径角挤压过程进行单道次三维有限元模拟和实验研究,获得变形过程中试样的应力、应变、致密行为等相关场量变化规律.模拟结果表明:等径角挤压工艺对粉末材料具有强烈的致密效果,整个变形过程可分为3个阶段,即初始变形、过渡变形及稳定变形;试样纵横截面上,等效应变均存在不均匀分布现象,靠近模具内角和上表面处试样所获应变较大,相对密度也较高.试样不同部位所处应力状态及应变速率分布状态的不一致是导致其应变分布不均匀的根本原因.单道次挤压实验结果与模拟结果具有较好的一致性,证明了所建立有限元模型的可靠性.  相似文献   

7.
纯铝等径角挤扭新工艺变形   总被引:1,自引:0,他引:1  
等径角挤扭(ECAPT)是结合等径角挤压(ECAP)和挤扭(TE)两种典型的大塑性变形(SPD)工艺而产生的一种新型细晶材料制备技术。利用刚塑性有限元技术对纯铝1100ECAPT工艺变形特征进行模拟研究,获得了等效应变和等效应力的大小及分布规律,分析了挤压载荷随变形时间的变化规律及其对试样变形的影响。结果显示,在模具拐角和螺旋通道处,等效应变得到有效积累,最终呈层状分布,且相对较为均匀,应变分布均匀性也得到一定改善,等效应力在上述两处区域达到最大。采用纯铝进行室温3道次ECAPT实验,测量试样显微组织和力学性能的变化。结果表明,实验结果与模拟结果具有较好的一致性;晶粒得到了明显细化,屈服强度、抗拉强度与显微硬度等力学性能得到明显提高,但试样塑性略有降低。  相似文献   

8.
等径角挤压(ECAP)是一种利用纯剪切变形获得块状超细晶材料的方法。利用非线性有限元软件对纯铝的ECAP变形过程进行了数值模拟,获得了等效应变和等效应力分布规律,为今后的研究打下基础。  相似文献   

9.
《铸造技术》2017,(7):1666-1669
采用Deform-3D有限元软件,在挤压温度为250~400℃条件下,对AZ31镁合金等径角挤压工艺进行了数值模拟,主要分析塑形成型过程中的挤压载荷、等效应力和等效应变的变化规律。结果表明,AZ31镁合金塑形成型过程中挤压载荷分为3个阶段:无明显变形阶段、快速增长阶段和稳定变形阶段。挤压载荷随着挤压温度的增加显著下降,试样的等效应力分布不均,模具转角处等效应力较大,存在应力集中现象,等效应变逐渐增加,在转角剪切区最大。试样经过ECAP变形后,心部等效应变大,从内向外应变呈减小的趋势,试样上部等效应变较大,下部等效应变相对较小,组织均匀性较好。  相似文献   

10.
使用有限元模拟软件DEFORM-3D分别对不同截面工件的包套等径角挤压过程进行数值模拟,分析了试样截面形状为圆形和正方形的EACP模型变形过程中应变分布及损伤因子的大小。结果表明,不同截面试样稳定变形阶段等效应变分布规律相似,圆截面试样的垂直方向等效应变分布更加均匀;挤压过程中,圆截面试样完全处于压应力状态,方截面试样在剪切变形区受到拉应力会导致包套开裂、内部坯料萌生裂纹甚至发生断裂;对比方截面试样,圆截面试样损伤因子较小;建议AZ31镁合金包套ECAP工艺的工件截面设定为圆形截面。  相似文献   

11.
采用Deform-3D对TA1等通道角挤压过程进行数值模拟,分析材料变形过程的流动规律、等效应力应变分布情况及载荷变化情况。结果表明,材料在模具通道转角处发生剧烈塑性变形,成形载荷迅速增大,整个挤压过程载荷波动剧烈,截面上应力应变分布不均匀。进行了等温等通道角挤压变形试验,结果表明,TA1在400℃下经等通道角挤压后零件表面光顺,无起皱破裂现象;材料的抗拉强度由挤压前404 MPa提高到585.24 MPa,材料显微硬度由211.49 HV提高到261.32 HV。金相结果显示,粗大的原始晶粒挤压后明显细化,在晶粒内部存在少量变形孪晶。  相似文献   

12.
针对等径角挤压和挤扭两种工艺的不足,在充分发挥各自优势的基础上,提出了一种新型的大塑性变形工艺——等径角挤扭(Equal Channel Angular Pressing and Torsion,ECAPT)。采用DEFORM-3D软件对纯铝粉末多孔材料等径角挤扭成形过程进行单道次三维有限元模拟,重点分析螺旋通道长度对变形试样挤压载荷、等效应变、致密行为等场量变化规律的影响。结果表明,相比于传统的ECAP变形,ECAPT工艺螺旋通道的存在,可大大增加变形试样内部的静水压力;合理的螺旋通道长度,可有效提高变形试样的累积应变量和应变分布均匀性,显著改善变形试样的整体致密效果。文章在综合考虑最优数值模拟结果的基础上,自行设计了螺旋通道长度为30mm的ECAPT模具,并进行了相关实验验证,证明了所建立有限元模型的可靠性。  相似文献   

13.
采用数值模拟的方法分析单道次纯钨闭塞式双通道等径角挤压工艺的变形特点,并对比等径角挤压工艺和双通道等径角挤压工艺经过Bc路径4道次变形后的应变积累和分布特点。同时,为验证有限元模拟的准确性,开展了物理实验。结果表明,闭塞式双通道等径角挤压变形过程可分为初始阶段、镦粗成形阶段、剪切变形阶段和最终成形阶段。3种工艺经4道次变形后均发生较大的应变积累,但是由于闭式模膛对试样头部的镦粗作用,闭塞式双通道等径角挤压经过4道次变形后等效应变量最大,且等效应变分布最均匀。通过对模具应力的分析,闭塞式双通道等径角挤压和双通道等径角挤压工艺可以有效解决等径角挤压工艺冲头偏载问题,且试样经闭塞式双通道等径角挤压变形后具有较大的静水压力,提高了纯钨塑性,有利于进行多道次变形。闭塞式双通道等径角挤压工艺变形后的试样可分为4个区域:剪切变形区、伸长变形区、头部小变形区和尾部未变形区。  相似文献   

14.
等径角挤压是获得块体超细晶材料的一种重要方法.针对纯铝粉末多孔材料,采用可压缩刚塑性有限元法对其等径角挤压过程进行数值模拟,并着重分析了静水压力对挤压效果的影响.研究结果表明,等径角挤压具有强烈的致密效果,增加变形体内部的静水压力不仅可以增加试件的变形能力,而且利于提高变形过程中材料的致密速度和获得高致密度的试件.  相似文献   

15.
基于半固态坯采用等径道角挤压(ECAE)制备的应用背景,采用PRO/E建立了等径道角挤压的几何模型,通过压缩实验获取了AZ91D镁合金的高温应力应变曲线,采用有限元软件DEFORM-3D对ECAE挤压变形过程进行了模拟,分析了内外转角部位的应力(平均应力、最大主应力和等效应力)变化、应变分布情况等,以揭示等径道角挤压变形跟模具内转角半径的关系。结果表明,模具内转角半径不为零时,坯料挤压过程中,将有正虚力存在,并且内外转角应力变化不尽相同;应变分布不均匀,具有一定梯度;内转角部位,除了承受剪切,还受到压缩作用,外转角反之。  相似文献   

16.
为提高传统ECAE工艺的挤压效率和变形效果,提出一种具有"球形分流"结构的新型等通道球形转角挤压工艺。采用DEFORM-3D有限元软件对工业纯铝ECAE-SC变形过程进行模拟,研究金属流动、挤压载荷、等效应变以及平均应力的分布及变化规律;在自行设计的ECAE-SC模具上成功实现工业纯铝室温单道次连续变形,对变形组织进行了EBSD分析和显微硬度测试。结果表明:ECAE-SC模具外角处球状圆弧的平滑过渡有效改善底部金属流动性,坯料经球形转角依次发生剪切、膨胀和挤压等3种不同形式的复合变形,挤压载荷表现出"急剧上升-缓慢增加-稳定变形"的变化趋势;1道次ECAE-SC变形后,坯料内部平均累积塑性应变高达3.07,沿长度方向形成1个近似平行四边形的稳定应变区,变形均匀性良好;工业纯铝坯料经室温1道次ECAE-SC变形后,外形完整、表面光滑、宏观无裂纹;材料内部形成大量细长的剪切变形带,晶粒破碎和细化现象明显,平均显微硬度大幅提高,由初始36.6 HV增加至58.7 HV。  相似文献   

17.
利用Deform-3D软件对Al-Mg-Mn合金进行了不等径角挤压有限元分析,研究了变形过程中试样的等效应变、等效应力分布规律以及挤压载荷的变化情况,并与同等条件下的等径角挤压进行了对比。模拟结果表明,不等径角挤压过程中,坯料在转角处会同时发生剪切变形与径向挤压变形,所需的挤压力较等径角挤压更大,但单道次应变量显著提升,提高了挤压效率与晶粒细化能力;不等径角挤压后,应变沿坯料长度方向呈现分段分布,从料头区域至料尾方向逐渐增大,然而坯料横截面上各处应变差别较小、无应变层化现象。实验验证结果表明,UECAP工艺可以显著细化Al-Mg6-Mn0.7合金晶粒,与模拟结果相符。  相似文献   

18.
等径角挤扭工艺的研究   总被引:2,自引:0,他引:2  
针对等径角挤压(ECAP)工艺和挤扭(TE)工艺中,材料变形不均匀,1道次变形获得的应变量不够大的缺点,将2种工艺有机结合,提出了等径角挤扭(ECAPT)工艺。利用UG和DEFORM-3D软件进行几何造型和有限元模拟,研究变形过程、应力应变分布和载荷变化,并用纯铝进行2道次ECAPT实验,测量试样显微组织和力学性能的变化。结果表明,ECAPT使组织产生更大的应变量,随着行程的增加,载荷增大,在TE通道平稳阶段达最大值,试样头部挤出TE通道后载荷降低;材料的宏观形貌同模拟结果一致,显微组织发生了明显细化,其中第1道次z面和第2道次y面细化效果明显;力学性能得以较大提高,屈服强度由43.31MPa提升至52.19MPa,抗拉强度由71.30MPa提升至130.38MPa。  相似文献   

19.
为了通过大塑性变形技术制备出满足工业需求的大尺寸块体超细晶材料,采用有限元法模拟了不同尺寸挤压件的1、2道次等径角挤压过程,得到了各挤压件的等效应变、等效应力和载荷曲线.分析得出:挤压件尺寸对等效应变的大小和分布以及等效应力的大小影响甚微;但随着挤压件尺寸的增大,等效应力和2道次等效应变的分布均匀性降低,挤压载荷增大.这表明:经过多道次等径角挤压的大尺寸挤压件可以获得晶粒分布均匀的大块体超细晶材料.  相似文献   

20.
针对挤扭(Twist Extrusion,TE)过程试样变形不均匀,结合挤扭和挤压工艺提出了复合挤扭(Composite Twist Extrusion,CTE)新型大塑性变形工艺。运用有限元分析法对纯铝在室温下进行数值模拟,获得了应力应变分布,载荷行程曲线,并对工艺进行改进消除了头部难变形区域。结果表明复合挤扭工艺可以有效地降低均匀系数,改进后的工艺可以获得变形均匀的试样。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号