首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the Republic of Croatia there are some medium temperature geothermal sources by means of which it is possible to produce electricity. However, only recently concrete initiatives for the construction of geothermal power plants have been started. Consequently, the paper provides proposals of the possible cycles for the Republic of Croatia. On the example of the most prospective geothermal source in the Republic of Croatia detailed analysis for the proposed energy conversion cycles is performed: for Organic Rankine Cycle (ORC) and Kalina cycle. On the basis of analysis results both the most suitable cycle for selected and for other geothermal sources in the Republic of Croatia are proposed. It is ORC which in case of the most prospective geothermal source in the Republic of Croatia has better both the thermal efficiency (the First Law efficiency) and the exergetic efficiency (the Second Law efficiency): 14.1% vs. 10.6% and 52% vs. 44%. The ORC gives net power of 5270 kW with mass flow rate 80.13 kg/s, while the Kalina cycle gives net power of 3949 kW with mass flow rate 35.717 kg/s.  相似文献   

2.
Turkey is one of the countries with significant potential in geothermal energy. It is estimated that if Turkey utilizes all of her geothermal potential, she can meet 14% of her total energy need (heat and electricity) from geothermal sources. Therefore, today geothermal energy is an attractive option in Turkey to replace fossil fuels. Besides, increase in negative effects of fossil fuels on the environment has forced many countries, including Turkey, to use renewable energy sources. Also, Turkey is an energy importing country; more than two-thirds of her energy requirement is supplied by imports. In this context, geothermal energy appears to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Since geothermal energy will be used more and more in the future, its current potential, usage, and assessment in Turkey is the focus of the present study. The paper not only presents a review of the potential and utilization of the geothermal energy in Turkey but also provides some guidelines for policy makers.  相似文献   

3.
Exergy analysis of a binary geothermal power plant is performed using actual plant data to assess the plant performance and pinpoint sites of primary exergy destruction. Exergy destruction throughout the plant is quantified and illustrated using an exergy diagram, and compared to the energy diagram. The sites with greater exergy destructions include brine reinjection, heat exchanger and condenser losses. Exergetic efficiencies of major plant components are determined in an attempt to assess their individual performances. The energy and exergy efficiencies of the plant are 4.5% and 21.7%, respectively, based on the energy and exergy of geothermal water at the heat exchanger inlet. The energy and exergy efficiencies are 10.2% and 33.5%, respectively, based on the heat input and exergy input to the binary Rankine cycle. The effects of turbine inlet pressure and temperature and the condenser pressure on the exergy and energy efficiencies, the net power output and the brine reinjection temperature are investigated and the trends are explained.  相似文献   

4.
The Carnot cycle is reviewed as to its appropriateness to serve as the ideal model for geothermal binary power plants. It is shown that the Carnot cycle sets an unrealistically high upper limit on the thermal efficiency of these plants. A more useful model is the triangular (or trilateral) cycle because binary plants operating on geothermal hot water use a non-isothermal heat source. The triangular cycle imposes a lower upper bound on the thermal efficiency and serves as a more meaningful ideal cycle against which to measure the performance of real binary cycles. Carnot and triangular cycle efficiencies are contrasted and the thermal efficiencies of several actual binary cycles are weighed against those of the ideal triangular cycle to determine their relative efficiencies. It is found that actual binary plants can achieve relative efficiencies as high as 85%. The paper briefly discusses cycles using two-phase expanders that in principle come close to the ideal triangular cycle.  相似文献   

5.
Atlas of geothermal resources in Europe   总被引:2,自引:0,他引:2  
The geothermal resources of most European countries have been estimated and compiled in the recently published Atlas of Geothermal Resources in Europe, a companion volume to the Atlas of Geothermal Resources in the European Community, Austria and Switzerland. Publication of this Atlas comes at a time when the promotion of a sustainable and non-polluting energy is high on the agenda of local energy suppliers, municipal administrations and all European governments. The participating countries are: Albania, Austria, Belarus, Belgium, Bosnia-Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Netherlands, Poland, Portugal, Romania, Russia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Ukraine and the UK. A volumetric heat content model for porous reservoirs was the basis for calculating the resources, assuming that exploitation of the geothermal resources would take place in a doublet well system. The geothermal reservoirs are defined in a set of 4 maps, by depth, thickness, temperature and resources. The assessment methodology is simple and is based on a small number of parameters so that regions with very limited data coverage can also be evaluated. An example is given in this paper of the eastern North German Basin. The maps presented in the Atlas permit a first order evaluation of the geothermal potential in terms of technical and economic viability. This uniform procedure applied to all countries and regions allows comparisons and serves as a guide for setting priorities and planning geothermal development. This Atlas also helps in the search for appropriate partners for international cooperation in geothermal exploration in Europe.  相似文献   

6.
Recent technical developments have made it possible to generate electricity from geothermal resources with low and medium enthalpy. One of these technologies is the Kalina Cycle System (KCS-34). In this study, electricity generation from Simav geothermal field is investigated. The optimum operating conditions for the KCS-34 plant design are determined on the basis of the exergetic and life-cycle-cost concepts. With the best design, power generation of 41.2 MW and electricity production of 346.1 GWh/a can be obtained with an energetic efficiency of 14.9% and exergetic efficiency of 36.2%. It is shown that, with the currently prevailing interest and inflation rates, the plant designs considered are economically feasible for values of the present worth factor (PWF) higher than 6.  相似文献   

7.
C. Coskun  I. Dincer 《Energy》2011,36(11):6358-6366
In this study, a modified exergoeconomic model is proposed for geothermal power plants using exergy and cost accounting analyses, and a case study is in this regard presented for the Tuzla geothermal power plant system (Tuzla GPPS) in Turkey to illustrate an application of the currently modified exergoeconomic model. Tuzla GPPS has a total installed capacity of 7.5 MW and was recently put into operation. Electricity is generated using a binary cycle. In the analysis, the actual system data are used to assess the power plant system performance through both energy and exergy efficiencies, exergy losses and loss cost rates. Exergy efficiency values vary between 35% and 49% with an average exergy efficiency of 45.2%. The relations between the capital costs and the exergetic loss/destruction for the system components are studied. Six new exergetic cost parameters, e.g., the component annualized cost rate, exergy balance cost, overall unavoidable system exergy destruction/loss cost rate, overall unavoidable system exergy destruction/loss cost rate, overall unavoidable system exergy production cost rate and the overall unavoidable system exergy production cost rate are studied to provide a more comprehensive evaluation of the system.  相似文献   

8.
The main high and low enthalpy geothermal fields in the Buyuk Menderes graben (Western Anatolia) and their reservoir temperatures are as follows: Kizildere (242 °C), Germencik (232 °C), Aydin-Ilicabasi (101 °C), Yılmazkoy (142 °C), Salavatli (171 °C), Soke (26 °C), Denizli -Pamukkale (36 °C), Karahayit (59 °C), Golemezli (101 °C) and Yenice (70 °C). The geothermal systems are controlled by active graben faults. The reservoir rocks in the geothermal fields are the limestone and conglomerate units within Neogene sediments and the marble-quartzite units within Paleozoic metamorphic formations. There are clear δ18O shifts from the Mediterranean Meteoric Water Line (MMWL) in the Kizildere, Germencik and Aydin fields, where a good relation between high temperatures and δ18O shift has also been observed, indicating deep circulation and water rock interactions. In the Pamukkale, Karahayit, Golemezli and Yenice fields and in Soke region, low temperatures, small isotope shifts, shallow circulations and mixing with shallow cold water have been noted.  相似文献   

9.
Fifty years of geothermal power generation at Wairakei   总被引:1,自引:0,他引:1  
The challenges and changes that have occurred over the last 50 years of remarkable service from the Wairakei Geothermal Power Project are reviewed. The project was initially constructed during the 1953–1963 period. Plant changes including the decommissioning of the high-pressure turbine generators, the installation of a 3.5-MW intermediate-low pressure steam turbine at the Wairakei Power Station in 1996, the commissioning of the 55 MW Poihipi Power Station in 1997, the 14 MW binary power plant at the Wairakei Power Station in 2005, and a proposed new station to be constructed in the Te Mihi area in 2011–2016 are briefly discussed. Also reviewed are steamfield aspects including steam separation processes, a pilot scheme that was designed to carry hot geothermal water some distance before flash steam generation by pressure reduction, steam production from vapor-dominated regions in the Wairakei reservoir, geothermal water injection, and cascade and direct heat uses. Finally, various aspects of the Wairakei development that have contributed to its success are described. It is anticipated that the geothermal resource will be producing beyond 2028 at generation levels 50% above the current (2008) level.  相似文献   

10.
Geothermal power is an important part of New Zealand's renewable electricity supply due to its attractive cost and reliability. Modular type binary cycle plants have been imported and installed in various geothermal fields in New Zealand, with plans for further expansion. Power output of these plants deteriorates in the summer because plant efficiency depends directly on the geothermal resource and the ambient temperature. As these plants normally use air-cooled condensers, incorporating a water-augmented air-cooled system could improve the power output in summer thereby matching the peak air-conditioning demand. In this work, power generation for the Rotokawa plant was characterized using a similar plant performance and local weather. The improved performance was modelled for retrofit with a wet-cooling system. Maximum generation increase on the hottest day could be 6.8%. The average gain in power over the summer, November–February, was 1.5%, and the average gain for the whole year was 1%. With current binary unit generation capacity at the Rotokawa plant of 35 MW, investment in a water-augmented air-cooled system could provide 2 MW of peak generation on the hottest days. This investment in efficiency is found to compare favourably to other supply options such as solar PV, wind or gas.  相似文献   

11.
The Efteni and Derdin geothermal areas are located in northwestern Turkey. Relatively low-temperature springs emerge from the Duzce Fault, a normal-component-dominated fault segment of the North Anatolian Fault System. The thermal waters of the Efteni and Derdin Springs show distinct geochemical and isotopic characteristics since they originate from different geothermal reservoirs and reflect the effects of different water–rock interaction processes. Geothermometry revealed higher reservoir temperatures for the Efteni system, however a strong δ18O shift, interpreted as being the result of isotopic exchange at high temperatures, was observed in the Derdin system. Hydrogeological and geochemical techniques are applied to identify recharge mechanisms, water–rock interaction processes and to construct conceptual models of these geothermal systems.  相似文献   

12.
Geothermal binary power plants that use low-temperature heat sources have gained increasing interest in the recent years due to political efforts to reduce greenhouse gas emissions and the consumption of finite energy resources. The construction of such plants requires large amounts of energy and material. Hence, the question arises if geothermal binary power plants are also environmentally promising from a cradle-to-grave point of view. In this context, a comprehensive Life Cycle Analysis (LCA) on geothermal power production from EGS (enhanced geothermal systems) low-temperature reservoirs is performed. The results of the analysis show that the environmental impacts are very much influenced by the geological conditions that can be obtained at a specific site. At sites with (above-) average geological conditions, geothermal binary power generation can significantly contribute to more sustainable power supply. At sites with less favorable conditions, only certain plant designs can make up for the energy and material input to lock up the geothermal reservoir by the provided energy. The main aspects of environmentally sound plants are enhancement of the reservoir productivity, reliable design of the deep wells and an efficient utilization of the geothermal fluid for net power and district heat production.  相似文献   

13.
Four models are developed for the use of geothermal energy for hydrogen production. These include using geothermal work output as the work input for an electrolysis process (Case 1); using part of geothermal heat to produce work for electrolysis process and part of geothermal heat in an electrolysis process to preheat the water (Case 2), using geothermal heat to preheat water in a high-temperature electrolysis process (Case 3), and using part of geothermal work for electrolysis and the remaining part for liquefaction (Case 4). These models are studied thermodynamically, and both reversible and actual (irreversible) operation of the models are considered. The effect of geothermal water temperature on the amount of hydrogen production per unit mass of geothermal water is investigated for all four models, and the results are compared. The results show that as the temperature of geothermal water increases the amount of hydrogen production increases. Also, 1.34 g of hydrogen may be produced by one kg of geothermal water at 200 °C in the reversible operation for Case 1. The corresponding values are 1.42, 1.91, and 1.22 in Case 2, Case 3, and Case 4, respectively. Greater amounts of hydrogen may be produced in Case 3 compared to other cases. Case 2 performs better than Case 1 because of the enhanced use of geothermal resource in the process. Case 4 allows both hydrogen production and liquefaction using the same geothermal resource, and provides a good solution for the remote geothermal resources. A comparison of hydrogen production values in the reversible and irreversible conditions reveal that the second-law efficiencies of the models are 28.5%, 29.9%, 37.2%, and 16.1% in Case 1, Case 2, Case 3, and Case 4, respectively.  相似文献   

14.
A combined concentrating solar power system and a geothermal binary plant based on an Organic Rankine Cycle (ORC) is analyzed. Given a supercritical ORC, designed for the optimal utilization of an intermediate enthalpy geothermal source, a solar parabolic trough field was included in the plant, introducing an additional high temperature heat source for the cycle and increasing power production. The off-design performance analysis of the power cycle was performed first. An hour-by-hour simulation was then carried out to estimate the yearly production using a detailed solar field model. Finally, a differential economic analysis was performed to determine the cost of the additional electricity generated with the solar source. On the basis of the current cost of solar collectors, levelized costs of electricity of 145-280 €/MWh were obtained depending on the location of the plant: a competitive value with respect to large, stand-alone concentrating solar power plants.  相似文献   

15.
Kizildere geothermal power plant, Turkey, has an installed capacity of 20.4 MWe. The field contains a high level of noncondensable gases (NCGs), changing from well to well, in amounts as high as 10–20% (with an average of 13% at the inlet of the turbine) by weight of steam. This amount of NCGs is being extracted from the condenser by gas compressors that consume about 17% of the total power production of the plant.An upstream reboiler process could be adopted to remove the NCGs from geothermal steam before they enter the turbine. Upstream reboilers therefore provide a cleaner and less corrosive steam supply to the turbine and condenser, increasing power generation performance for very high NCG contents.In this paper, upstream reboiler systems are investigated as an alternative to conventional gas extraction systems for Kizildere geothermal power plant. A vertical tube type reboiler has been designed and it is found that, as NCG content increases, the condensation heat transfer coefficient reduces steeply. It is concluded that vertical tube type reboilers are not efficient for fields that contain high levels of NCG (>15% by weight of steam). It is recommended that the use of direct contact reboilers be further investigated for this application.  相似文献   

16.
17.
This paper presents Turkey's net electricity energy generation and demand based on economic indicators. Forecasting model for electricity energy generation and demand is first proposed by the ant colony optimization (ACO) approach. It is multi-agent system in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimization problem. Ant colony optimization electricity energy estimation (ACOEEE) model is developed using population, gross domestic product (GDP), import and export. All equations proposed here are linear electricity energy generation and demand (linear_ACOEEGE and linear ACOEEDE) and quadratic energy generation and demand (quadratic_ACOEEGE and quadratic ACOEEDE). Quadratic models for both generation and demand provided better fit solution due to the fluctuations of the economic indicators. The ACOEEGE and ACOEEDE models indicate Turkey's net electricity energy generation and demand until 2025 according to three scenarios.  相似文献   

18.
This paper presents the development stages of a micro-scale system for electricity generation from biomass with 500 W of power. The proposed system is based on an open steam power cycle, whose conception was aimed at seeking solutions to meet the needs for energy supply in isolated communities in the Amazon region. In addition the great biomass potential in the region is an opportunity for the application of biomass energy to increase the economic activity and develop new technologies. The tests performed demonstrate that the steam turbine is the critical component to the commercial-scale feasibility of the presented technology, particularly when it's proposed manufacturing of the system by small regional industries.  相似文献   

19.
This research presents estimates of potential regional electric market shares for geothermally produced electricity in the Rocky Mountain Basin and Range Region of the western United States. A model is described which simulates the exploration for and the discovery and harnessing of electric grade geothermal energy resources during the period 1986–1995. Concurrently, electricity demand forecasts are prepared for the same period using a set of estimated electricity demand models. The two forecasts are then integrated to calculate regional electric market shares for a set of alternate electricity price futures.  相似文献   

20.
Turkey has remarkable wind energy potential, but its utilisation rate is very low. However, in 2007, energy investors applied to the Energy Market Regulatory Authority (EMRA) with 751 wind projects to obtain a 78180.2 MW wind power plant license. This paper first presents an overview of wind energy development in the world and then reviews related situations in Turkey. Second, to motivate the interest in wind energy investment, new wind power plant license applications in Turkey are analysed. Finally, wind electricity generation cost analyses were performed at 14 locations in Turkey. Capacity factors of investigated locations were calculated between 19.7% and 56.8%, and the production cost of electrical energy was between 1.73 and 4.99 $cent/kW h for two different wind shear coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号