首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
在建立港口起重机轮轨接触的三维实体模型的基础上,通过商业软件ANSYS建立了车轮材料不做硬化、部分硬化、全部硬化三种有限元模型.计算了这三种模型点接触和线接触两种轮轨接触模型的接触应力和接触面积,并与相应的赫兹理论值作对比.计算结果表明,当材料没有发生塑性强化时,由赫兹理论计算出的接触应力分布情况与数值模拟计算的结果吻合得很好;车轮硬化后的接触应力值比不做硬化的要小;部分硬化与全部硬化的计算值很接近.  相似文献   

2.
地铁线路曲线段磨耗状态下轮轨滚动接触有限元分析   总被引:1,自引:1,他引:1  
基于城市轨道交通曲线段不同磨耗程度的典型钢轨和车轮的实测型面,利用有限元分析软件ANSYS建立曲线段轮轨三维弹塑性接触有限元模型,对三种不同轮轨磨耗型面匹配工况下的地铁车辆的曲线通过性能以及轮轨接触应力进行计算分析,分析不同磨耗状态下车轮和钢轨接触时的接触应力和轮轨应力的分布状态,并研究其对钢轨磨耗的影响。发现钢轨使用初期,由于轮轨廓形不一致,轮轨间易出现应力集中,应力集中部位易出现磨损;随着钢轨侧磨的增加,轮轨接触状态逐渐由一点接触变为两点接触,且接触点的塑性变形部分和弹性部分的过渡区间易出现裂纹;两点接触状态下,外侧轨距角处接触面积及应力集中区域远大于钢轨侧面部分,轨距角易出现较大的接触压力,易加速钢轨磨耗与疲劳伤损的产生。  相似文献   

3.
牵引/制动载荷和轮轨黏着条件对轮轨系统动态相互作用影响显著,尤其是轮轨切向作用。基于车辆-轨道耦合动力学理论,建立地铁车辆-板式轨道空间耦合动力学模型;由于轮轨接触斑形状以及接触应力分布实际上呈明显的非赫兹特性,因此建立考虑轮对摇头角的轮轨非赫兹法向接触模型以及相应的轮轨非赫兹蠕滑模型,并用于耦合动力学的轮轨动态相互作用计算中。基于所建立的动力学仿真模型,系统分析牵引/制动载荷以及复杂的轮轨界面黏着条件对轮轨系统动态相互作用的影响。结果表明,牵引/制动载荷和轮轨黏着条件对轮轨切向接触应力及黏-滑区域分布影响显著,在干燥接触条件下,随着牵引/制动载荷的增大轮轨切向应力幅值增大,黏着区域减小,而当牵引/制动载荷较高且轮轨黏着水平较低时,接触斑内表现为全滑动状态。研究结果可为车轮/钢轨异常磨损和型面优化设计进一步研究提供理论基础。  相似文献   

4.
针对地铁运营中出现的道岔心轨损伤问题,调查并测量了车轮型面和辙叉区轨头型面,发现运营3.1万km后车轮踏面发生异常磨耗,在踏面尾部出现凸台(或称假轮缘);在翼轨上存在沟槽磨耗。基于实测型面建立了车轮辙叉接触有限元模型,结合迹线法,分析了不同凸台高度的车轮分别与新辙叉、磨耗辙叉之间的接触几何关系和接触应力。对比分析结果表明,具有凸台的车轮异常磨耗对轮轨接触不利,会减小车轮与新辙叉的接触面积,增大轮轨接触应力。在轮对横移时,凸台磨耗会造成车轮与心轨薄弱处接触,易导致心轨损伤。采用镟修异常磨耗车轮或合理的闸瓦与车轮匹配关系,可消除或减缓车轮凸台形异常磨耗,从而避免道岔心轨损伤。  相似文献   

5.
利用W-M分形函数,建立考虑钢轨表面粗糙的二维轮轨弹性接触模型,进而引入温度对材料参数和摩擦系数的影响,采用直接耦合法模拟车轮以1m/s速度沿钢轨滑动45mm,阐明粗糙表面的轮轨滑动接触热响应的特性。利用Hertz理论验证了有限元接触算法的精确性,在此基础上研究了表面廓形影响下的接触应力随分形函数自变量维数D和尺度系数G变化的规律,验证了有限元模型模拟粗糙表面的可靠性。研究结果表明:粗糙表面对轮轨温度场分布特点没有影响,但会引起轮轨表面温度和温升过程的波动;车轮最高温度相差4℃,钢轨最高温度相差10℃,且车轮最高温度更高;车轮和钢轨表面的温度波动受D和G的控制,但影响规律存在差异:钢轨表面温度随D和G的改变线性变化,而车轮表面温度变化未体现类似的线性关系。因此,可借助轮轨表面粗糙度特征对钢轨温度波动进行合理预测。  相似文献   

6.
基于轮轨法向间隙的车轮踏面优化方法   总被引:10,自引:0,他引:10  
为了寻求基于目标的铁路车辆车轮踏面数值优化技术,开发一种考虑轮轨法向间隙参数的车轮踏面优化方法。利用该方法优化我国高速列车车轮LMa型面。并发现优化后的LMa车轮和CHN60钢轨滚动接触接触时,轮轨界面之间具有较好的“共形”特性,这样能有效降低轮轨接触应力以达到降低滚动接触疲劳目的。并用车辆轨道耦合动力学理论分析优化的车轮型面对车辆动态特性的影响。数值结果表明,在不降低车辆动力学性能的情况下,此方法可以有效改善轮轨接触点对分布,降低轮轨接触应力。  相似文献   

7.
轮轨接触应力数值计算方法   总被引:3,自引:0,他引:3  
为了得到轮轨接触应力较精确的数值解,分别采用Hertz接触理论模型、传统有限元模型及改进有限元模型求解轮轨接触应力,并从计算精度和计算时间方面对3种模型进行了比较.结果表明,有限元模型较Hertz接触理论模型更能反映轮轨接触的实际情况,改进的有限元模型在允许的计算精度范围内可以大大提高计算效率;轮轨最大接触应力发生在轮轨表面以下约2.5 mm的位置,呈弧形分布,并随轴重的增加而增大,高应力区宽度增大,离初始接触位置一定距离处的钢轨表面出现高应力区.  相似文献   

8.
轮轨高频动力分析模型目前多沿用了传统的赫兹接触模型,其在高速轮轨系统上的适用性尚未得到验证。针对赫兹接触工况,建立基于多体动力学的车轮-轨道耦合动力学和车辆动力学模型,其中轮轨法向接触由赫兹弹簧表征,作为对比也建立基于显式有限元的三维高速轮轨瞬态滚动接触有限元模型,采用可考虑三维接触几何的"面-面"接触算法精确求解轮轨接触。对比150~500km/h速度范围内典型钢轨短波波磨(波长20~140mm、波深0.01~0.20mm)激励下的高频轮轨力结果,发现三种模型预测的幅值存在显著差异,但未发生轮轨脱离时(波磨尚浅),三种模型预测的幅值均与波深线性正相关。具体而言,相较于瞬态滚动接触模型,车轮-轨道耦合动力学和车辆动力学模型预测的垂向轮轨力更大,其特征幅值的最大差值分别为静轮重的39.2%和88.4%,三种模型预测波长30mm波磨的临界波深(恰好发生轮轨脱离)相应地高于0.2mm、0.14mm和0.05mm。开展高速、高频轮轨动力分析时,传统的赫兹接触弹簧会带来不可忽略的计算误差。  相似文献   

9.
针对车轮啃轨这一常见但长期未得到有效解决的难题,提出一种车轮单侧弧型踏面结构,即起重机一侧车轮由优化的参数化弧形踏面替代平面踏面,改变轮轨的接触形式;而另一侧仍采用平面踏面对轨道的跨距误差进行补偿。建立轮轨接触理论仿真模型,分析车轮踏面的弧形结构参数对于接触应力、摩擦力及啃轨的影响。通过QD35-28.5双梁桥式起重机试验和现场应用验证该技术对于解决起重机啃轨问题的有效性。  相似文献   

10.
采用显式有限元法建立考虑钢轨脱碳层的三维轮轨瞬态滚动接触模型,将轮轨真实三维几何、材料非线性和车辆—轨道高频动力作用充分考虑在内,采用"面-面"接触算法于时域内重现了车轮在带脱碳层钢轨上的瞬态滚动接触行为,得到了随时间变化的法、切向接触解。对比发现,屈服应力较低的脱碳层会增大钢轨表层的塑性变形,使得轮轨接触斑和黏着区增大,而最大法、切向接触应力和摩擦功相应降低;厚度有限(一般小于1 mm)的脱碳层对接触斑形状与尺寸的影响可忽略,但对接触应力、黏滑分布和摩擦功的影响不可忽略。脱碳层增厚会加大表面数层单元的总塑性变形,但第一层单元的塑性变形会因变形的再分布而稍稍变小。脱碳层的纵向不连续会使轮轨力、接触应力均在边界上呈现重要变化,车轮由带实测脱碳层钢轨滚入无脱碳层钢轨时,法、切向轮轨力会出现幅值分别为0.32和1.14 kN的动态力,相应的最大法、切向接触应力和摩擦功较脱碳层钢轨上的稳态值分别增加4.42%、19.71%和83.19%。某些条件下,这些突变或可引发不均匀磨耗,进而导致原本平顺的轨面上出现几何不平顺。  相似文献   

11.
高速铁路钢轨预打磨型面优化分析   总被引:5,自引:0,他引:5  
高速铁路的发展使钢轨磨损和滚动接触疲劳损伤日益受到重视。研究表明,预打磨后钢轨可有效延长服役寿命。为实现预打磨最佳廓形的选择,基于蒙特卡洛方法建立假设轮对横移量服从高斯分布的轮轨接触概率分析模型。据此,确定出列车运行时考虑轮对横移量的轮轨接触位置,并采用轮轨三维有限元模型计算得到相应接触应力的概率分布。结果表明,轮对横移量对最大接触应力值具有显著影响,横移量为10 mm、0 mm、8 mm时其值分别为1 712.6 MPa、1 362.1 MPa、448.7 MPa。亦发现虽然累积接触应力和平均接触应力均可作为衡量不同钢轨廓形力学性能优劣的指标,但二者的预测结果并不一致,如60 kg/m(CHN60)钢轨的平均接触应力,在轨距角附近(距钢轨中心线30 mm处内侧)的值4倍于踏面中心区域,相应的累积接触应力,在踏面的中心区域的值则接近10倍于轨距角附近。为综合考虑钢轨累积接触应力和平均接触应力对预打磨型面的影响,提出加权累积和平均接触应力,并以此作为钢轨预打磨廓形优化的评价指标。依据该指标对按照打磨工程经验设计的四条钢轨预打磨廓形进行评价分析,得到较优的钢轨打磨廓形。对制定钢轨廓形优化和打磨方法具有一定的工程参考价值。  相似文献   

12.
针对城市轨道交通中低地板车辆车轮经常出现的轮缘严重磨耗现象,研究其轮轨接触状况,由于城市轨道交通中小半径曲线较多,存在较大的冲角,为研究冲角对轮轨接触状况的影响,利用轮轨型面测量仪测量运用中的70%低地板车辆车轮与钢轨型面,建立具有不同冲角的车轮与钢轨接触模型,在横向力与牵引力矩作用下应用非线性有限元法进行弹塑性接触计算,分析不同工况下的等效应力及接触斑的变化规律,研究冲角、横向力与牵引力矩对钢轨接触状况的影响。通过计算分析得出以下结论:具有不同冲角的轮轨接触斑形状几乎相同,踏面接触斑近似矩形,轮缘接触斑相对狭长,容易造成轮缘磨耗;冲角增大,轮缘接触斑相对踏面接触斑的超前值增大;随着冲角的增大,轮轨最大等效应力逐渐增大,磨耗功率增大,故在轮轨型面匹配和车辆结构设计中应尽量将轮轨冲角控制在1°以内。  相似文献   

13.
李亨利  李芾 《机械工程学报》2016,52(24):130-135
在中国既有线路的参数设置下,建立标准LM车轮与R60轨和R75轨配合时的轮轨接触和磨耗模型,对比研究不同轮轨配合时的磨耗性能。计算表明R75轨轮轨接触点集中分布在轨侧、轨头和轨顶三个区域,接触线不连续。在当轮对横移小于3 mm时,两种钢轨滚动圆半径差和接触角差基本一致,轮对横移大于3 mm时,R75轨的滚动圆半径差和接触角差稍小。R75轨与LM车轮配合时,在车轮踏面和轮缘、钢轨轨顶和轨角两段圆弧的过渡段的接触斑面积和应力变化剧烈。车辆在直线上运行时,R75轨的轮轨磨耗将增大数倍,动态通过800 m半径曲线时,外轨磨耗增大约45%。轮轨配合的理论分析表明R75轨不适应我国重载运输,采用提高强度的R60轨更符合我国重载铁路的实际情况。  相似文献   

14.
王彩芸  郭俊  刘启跃 《机械》2009,36(8):5-8
基于非Hertz滚动接触理论利用数值计算方法详细分析了静态接触情况下,轴重和曲线半径对轮轨接触质点间等效应力、接触斑粘滑区的分布、总滑动量和摩擦功的影响。分析计算表明,轴重增加引起轮轨接触质点间等效应力,接触质点间粘滑区的面积以及总滑动量的变化,同时对轮轨接触质点阍的摩擦功的变化有重要影响;小曲线半径处轮轨接触质点间的总滑动量,接触斑滑移区的面积以及摩擦功都明显增大,导致曲线上钢轨磨损加剧。因此曲线半径和轴重是影响轮轨滚动接触磨损的重要因素。  相似文献   

15.
基于ANSYS的轮轨摩擦滑动接触应力分析   总被引:1,自引:0,他引:1  
王娟  何成刚  文广  王文健  刘启跃 《机械》2013,(12):10-13,28
以Hertz接触理论为依据,利用ANSYS建立2D有限元计算模型,模拟原地打滑、完全制动等轮轨滑动摩擦接触行为。分析了轮轨静接触和滑动接触时接触应力分布情况,研究了接触状态、轴重、滑动速度、载荷类型和钢轨轨顶圆半径对接触应力的影响。结合Hertz接触理论计算结果、剥离损伤理论和自激振动理论进行了轮轨损伤分析。  相似文献   

16.
使用与滑动速度相关的摩擦因数替代库伦摩擦定律中的常系数,结合mixed Lagrangian/Eulerian方法建立轮轨滚动接触有限元模型,分析牵引力主导的蠕滑工况下的干燥状态的轮轨滚动接触特性。通过与摩擦因数取值为常数的轮轨滚动接触分析结果对比发现:与滑动速度相关的摩擦因数对轮轨滚动接触最大接触应力和接触斑面积影响不大,均在1%以内;但是对轮轨接触斑内最大Mises应力、最大纵向切应力、最大横向切应力和最大等效塑性应变影响较大,特别是对最大纵向切应力影响幅度近20%;更需要引起注意的是对轮轨滚动接触摩擦力矢量分布和切向塑性应变分布影响明显,这对轮轨滚动接触疲劳损伤分析非常重要。  相似文献   

17.
A coupling thermo-mechanical model of wheel/rail in rolling-sliding contact is put forward using finite element method. The normal contact pressure is idealized as the Hertzian distribution, and the tangential force presented by Carter is used. In order to obtain thermal-elastic stress, the ther-mal-elastic plane stress problem is transformed to an elastic plane stress problem with equivalent fictitious thermal body force and fictitious boundary distributed force. The temperature rise and ther-mal-elastic stress of wheel and rail in rolling-sliding are analyzed. The non-steady state heat transfer between the contact surfaces of wheel and rail, heat-convection and radiation between the wheel/rail and the ambient are taken into consideration. The influences of the wheel rolling speed and wear rate on friction temperature and thermal-elastic stress are investigated. The results show the following: ① For rolling-sliding case, the thermal stress in the thin layer near the contact patch due to the friction temperature rise is severe. The higher rolling speed leads to the lower friction temperature rise and thermal stress in the wheel; ② For sliding case, the friction temperature and thermal stress of the wheel rise quickly in the initial sliding stage, and then get into a steady state gradually. The expansion of the contact patch, due to material wear, can affect the friction temperature rise and the thermal stress during wear process. The higher wear rate generates lower stress. The results can help under-stand the influence of friction temperature and thermal-elastic stress on wheel and rail damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号