首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anisotropic conductive adhesive film (ACF) can be preheated by microwave (MW) radiation in order to reduce the bonding time for flip-chip technology. Due to sluggish and nonuniform curing kinetics at the beginning of the curing reaction, thermal curing of epoxy is more time consuming. Therefore, MW radiation may be more effective, due to its uniform heating rate during the cycle. In this paper, MW preheating (for 1–4 sec) of ACF prior to final bonding has been applied to determine the electrical and mechanical performance of the bond. Powers of 80 and 240 W MW were used to study the effect of the MW preheating. A final bonding time of 6–7 sec can be used for flip chip on flex bonding instead of 10–15 sec (standard time for flip chip bonding) for MW preheating time and power used in this study. The contact resistance (as low as 0.01) is low in these samples, whereas the standard resistance is 0.017 ohm (bonded at 180°C for 10 sec without prior MW preheating). The shear forces at breakage were satisfactory (0.167–0.183 KN) for the samples bonded for 6–7 sec with MW preheating. This is very close and even higher than the standard sample (0.173 KN). For MW preheating power of 80 W and sweeping time of 2 sec, final bonding at 6 sec can also be used because of its low contact resistance (0.019 ohm). Scanning electron microscope (SEM) investigation of microjoints and fracture surface shows uneven distribution of conductive particles and thick bond lines in samples bonded for 5 sec (with MW preheating). Samples treated with MW radiation (80 W and 2–3 sec time) serve as evidence that well-distributed particles along with thin bond lines cause low contact resistance and high joint strength.  相似文献   

2.
The anisotropic conductive adhesive (ACA) is a promising solder alternative candidate that shows potential for further pitch reduction. Although much work has been published on ACA joint behavior, study on correlation of material properties with reliability performance is still lacking. The main objective in this study was to identify the impact of material properties on reliability, so as to engineer highly reliable microelectronics assemblies. Four representative ACA materials (both film and paste types) with diverse properties were selected. Material properties were characterized as close as possible to "stress test" conditions so as to allow more accurate correlation predictions. Reliability performance was obtained by assembling test chips of 200-/spl mu/m pitch onto BT-substrates, then subjecting them to reliability tests. Correlation analysis was conducted and key material properties that contributed to good reliability performance were identified. Findings indicated that the best properties for high reliability assemblies were: high adhesion strength after subjecting to "stress aging", low coefficient of moisture expansion (CME) and low elastic modulus (E).  相似文献   

3.
The use of anisotropic conductive adhesives film (ACF) as an interconnect materials for flip-chip joining technique is increasingly becoming a vital part of the electronics industry. Therefore, the performances of the ACF joint turn into an important issue and depend mostly on the curing condition of the ACF matrix. ACF is a thermosetting epoxy matrix impregnated with small amount of electrically conductive particles. During component assembly, the epoxy resin is cured to provide mechanical connection and the conducting medium provides electrical connection in the z-direction. Therefore, the cure process is critical to develop the ultimate electrical and mechanical properties of ACF. The purpose of the present work is to investigate optimum curing conditions to achieve the best performance of ACF joints. Differential scanning calorimeter was used to measure the curing degree. Adhesion strength was evaluated by 90° peeling test. The contact resistance has also been studied as a function of bonding temperature and curing degree. Results show a strong dependence of curing condition on the electrical and mechanical performances. Adhesion strength increases exponentially with the curing degree. Whereas the contact resistance decreases with the curing degree and achieve the minimum value at 87% of curing. Co-relation of the curing degree of the ACF was also studied through the detailed investigation of the fracture surfaces under scanning electron microscopy.  相似文献   

4.
Failure mechanism of lead-free solder joints in flip chip packages   总被引:1,自引:0,他引:1  
The failure mechanisms of SnAgCu solder on Al/Ni(V)/Cu thin-film, underbump metallurgy (UBM) were investigated after multiple reflows and high-temperature storage using a ball shear test, fracture-surface analysis, and cross-sectional microstructure examination. The results were also compared with those of eutectic SnPb solder. The Al/Ni (V)/Cu thin-film UBM was found to be robust enough to resist multiple reflows and thermal aging at conditions used for normal production purposes in both SnAgCu and eutectic SnPb systems. It was found that, in the SnAgCu system, the failure mode changed with the number of reflows, relating to the consumption of the thin-film UBM because of the severe interfacial reaction between the solder and the UBM layer. After high-temperature storage, the solder joints failed inside the solder ball in a ductile manner in both SnAgCu and SnPb systems. Very fine Ag3Sn particles were formed during multiple reflows in the SnAgCu system. They were found to be able to strengthen the bulk solder. The dispersion-strengthening effect of Ag3Sn was lost after a short period of thermal aging, caused by the rapid coarsening of these fine particles.  相似文献   

5.
The effect of the substrate-pad physical properties (surface roughness and hardness) on the current-carrying capacity of anisotropic-conductive film (ACF) joints is investigated in this work. Flip chips with Au bumps were bonded to the flexible substrates with Au/Cu and Au/Ni/Cu pads using different bonding pressure. It was found that the current-carrying capacity of ACF joints increased to a maximum value with the rise of the bonding pressure; then, it reduced if the bonding pressure continually increased. The maximum average value per unit area of Au/Ni/Cu pad and Au/Cu pad ACF joints is about 93 μA/μm2 and 118 μA/μm2, respectively, at 100-MPa bonding pressure. The variation trend of connection resistance is the opposite of current-carrying capacity. The variation of current-carrying capacity (or connection resistance) of Au/Cu pad joints is larger than that of Au/Ni/Cu pad joints. The current-carrying capacity is related to the variation of the resistance of ACF joints. The connection resistance of ACF joints depends primarily on the particle constriction resistance (Rcoi), Rcoi ∞ 1/a, where “a” is the radius of contact spot. A smaller contact area results in larger joule heat generation per unit volume (Qg), Qg ∞ 1/a4, which preferentially elevates the temperature of the constriction. The raised temperature increases the resistance because of the temperature-dependent coefficient of the metal resistivity. The theory of tribology is used to explain the difference between Au/Cu pad and Au/Ni/Cu pad ACF joints. For the Au/Cu pad ACF joints, the deformation of the particles’ upper and bottom sides is nearly symmetrical; the contact between conductive particles and pad has the character of “sliding contact,” especially under high pressure. For the Au/Ni/Cu pad ACF joint, the contact between particles and pad determined the conduction characteristics of ACF joints. It has the character of “static contact.” Thus, the current-carrying capacity (or connection resistance) of Au/Cu pad joints is more sensitive to the bonding pressure.  相似文献   

6.
The work presented in this paper focuses on the effect of reflow process on the contact resistance and reliability of anisotropic conductive film (ACF) interconnection. The contact resistance of ACF interconnection increases after reflow process due to the decrease in contact area of the conducting particles between the mating I/O pads. However, the relationship between the contact resistance and bonding parameters of the ACF interconnection with reflow treatment follows the similar trend to that of the as-bonded (i.e. without reflow) ACF interconnection. The contact resistance increases as the peak temperature of reflow profile increases. Nearly 40% of the joints were found to be open after reflow with 260 °C peak temperature. During the reflow process, the entrapped (between the chip and substrate) adhesive matrix tries to expand much more than the tiny conductive particles because of the higher coefficient of thermal expansion, the induced thermal stress will try to lift the bump from the pad and decrease the contact area of the conductive path and eventually, leading to a complete loss of electrical contact. In addition, the environmental effect on contact resistance such as high temperature/humidity aging test was also investigated. Compared with the ACF interconnections with Ni/Au bump, higher thermal stress in the Z-direction is accumulated in the ACF interconnections with Au bump during the reflow process owing to the higher bump height, thus greater loss of contact area between the particles and I/O pads leads to an increase of contact resistance and poorer reliability after reflow.  相似文献   

7.
The effect of misalignment on the electrical properties of anisotropic conductive film (ACF) joints is investigated in this work. It is found that along with the increase of misalignment, the connection resistance of ACF joints increases. When the misalignment in x-direction is less than 5 μm, the increase rate of connection resistance is quite large. Then, along with the severity of misalignment, the increase rate becomes smaller. Finally, when the misalignment is close to 20 μm, the increase rate rises again. The Holm's electric contact theory is used for understanding the connection resistance variation. On the other hand, with the increase of misalignment in x-direction, the insulation resistance between ACF joints decreases. If the misalignment exceeded 10 μm, the decrease is prominent for the Ni particle ACF joints. This phenomenon can be explained by the effect of dielectric damage of the epoxy.Computer programs are also developed to calculate the variation of the probability of open and shorting after misalignment and predicate the maximum misalignment tolerance. The results show that the open and shorting probability increase abruptly after misalignment. On the view of pad parameters, the open probability is mainly related to the pad area, while the pads gap is critical to the shorting probability. Large pads gap (small pad width) can reduce the shorting probability obviously. On the other hand, enlarging the pad area by increasing pad length decreases the open probability significantly. So comparing to square shape pad, rectangle shape pad can reduce the failure probability greatly.  相似文献   

8.
This paper presents the results from the evaluation of different types of flexible substrates for high-density flip chip application. In this work four different flexible substrates were used. The flex substrates were Espanex, Upilex and epoxy glass with 80 μm pitch and Upilex with 54 μm pitch. Two different test IC’s were used for both pitches. In test IC1 (80 μm pitch) and IC3 (54 μm pitch) the bumps were in one row and test IC2 (80 μm pitch) and IC4 (54 μm pitch) in two rows. The total amount of contacts in test IC1 was 190, in test IC2 173, in test IC3 293 and in test IC4 270. The anisotropically conductive adhesive that was used in the tests was epoxy based thermosetting adhesive film with conductive particles. The conductive particles in the adhesives were isolated soft metal-coated polymer particles. The contact resistance was measured using Kelvin four-point method and the continuity and series resistance using daisy chain structure. The reliability of the flip chip interconnections was tested in temperature cycling test and environmental test. Cross section samples were made to analyse the possible reason for failures. The results presented in this paper are from FLEXIL development project that is part of European Union IST research program.  相似文献   

9.
In this work we study how the endurance performance of electrically conductive adhesive interconnections of flip chip integrated circuits with a pitch of 200 and 150/spl mu/m on flexible substrates is affected by varying environmental conditions. This is accomplished by comparison of offline and online control measurements that are carried out to monitor the electrical resistance in temperature-humidity and temperature cycling stress tests. From the gradual degradation of the resistance with time and the failure analysis, it is conjectured that periodic absorption and desorption of moisture forms one of the more important failure mechanisms in this type of assembly.  相似文献   

10.
The drive toward new first level interconnection technologies is running in parallel with the need to study their reliability as such, as well as in further processes such as second level reflow soldering. Both material properties and process settings have a significant effect on the reliability of adhesive interconnections of flip chips on flexible foil substrates. Integrated circuits (ICs) with pitches of 200 and 300 /spl mu/m bonded on two different foil types were subjected to various moisture preconditioning treatments, and subsequently reflow soldered. Measurements of the daisy chain resistance are used to monitor the yield before and after reflow testing, and to qualify the endurance behavior in the 85/spl deg/C/85% RH stress test. We address here the possible failure mechanisms.  相似文献   

11.
Flip chip assembly directly on organic boards offers miniaturization of package size as well as reduction in interconnection distances, resulting in a high performance and cost-competitive packaging method. This paper describes the usefulness of low cost flip-chip assembly using electroless Ni/Au bump and anisotropic conductive films on organic boards such as FR-4. As bumps for flip chip, electroless Ni/Au plating was performed as a low cost bumping method. Effect of annealing on Ni bump characteristics informed that the formation of crystalline nickel with Ni3P precipitation above 300°C causes an increase of hardness and an increase of the intrinsic stress. As interconnection material, modified ACFs composed of nickel conductive fillers for conductive fillers, and nonconductive fillers for modification of film properties, such as coefficient of thermal expansion (CTE), were formulated for improved electrical and mechanical properties of ACF interconnection. Three ACF materials with different CTE values were prepared and bonded between Si chips and FR-4 boards for the thermal strain measurement using moire interferometry. The thermal strain of the ACF interconnection layer, induced by temperature excursion of 80°C, was decreased according to the decreasing CTEs of ACF materials. This result indicates that the thermal fatigue life of ACF flip chip assembly on organic boards, limited by the thermal expansion mismatch between the chip and the board, could be increased by low CTE ACF  相似文献   

12.
The RF performance of a single flip-chip joint using anisotropic conductive adhesive (ACA) was modeled using three-dimensional finite difference in time domain (FDTD) methodology. The effects of the number, the distribution of ACA conductive particles, as well as the ACA resin, on RF transition of the joint were studied. The results show that the number and the distribution of conductive particles as well as the adhesive resin have limited influence on the RF performance of an ACA flip-chip joint. Based on the FDTD simulation results, an equivalent circuit model of a single ACA flip-chip joint was also proposed.  相似文献   

13.
Flip chip on board (FCOB) circuits with solder bumps or isotropically conductive adhesives (ICA) may be subject to joint failure during thermal cycling. Although use of epoxy underfill can increase the lifetime significantly, there is still a risk of failure if the material properties of the underfill material are not adequate to prevent excessive values of stress and strain in the joints. This paper presents experimental measurements of the number of thermal cycles to failure for both solder reflow and ICA joint FCOB circuits. Measurements have been carried out for several different material systems with various types of underfill. The measurements of solder bump lifetime are compared to a lifetime model based on analytical calculations of solder strain. For an underfill type without filler (CTE=58 ppm//spl deg/C), the measurements are in excellent agreement with the model predictions, both giving an average lifetime of around 1500 thermal cycles between -55 and 125/spl deg/C. For two filled types of underfill with CTE nearly matched to that of solder, the measured average lifetimes vary from around 2700 to 5500 cycles. The corresponding model predictions are around 6000 and 7000 cycles, respectively. Measurements of the lifetime of FCOB's with ICA connections have been carried out for two different material systems. The obtained lifetimes vary between approximately 500 and 4000 cycles. No systematic lifetime variation with the thermal expansion of the underfill has been observed, but the lifetime seems to be dependent on the properties of the bump on the chip pad. Delamination, for instance at the ICA/bump interface, is found to be an important cause of failure.  相似文献   

14.
Thermal resistance analysis and validation of flip chip PBGA packages   总被引:2,自引:1,他引:2  
This work proposes a finite element numerical methodology to predict the thermal resistance of both flip chip-plastic ball grid array (FC-PBGA) with a bare die and FC-PBGA with a metal cap. The 3D finite element model was initially constructed to simulate the thermal resistance of FC-PBGA. A thermal resistance experiment was performed to verify the FEM results, following the construction of specimens of FC-PBGA with a bare die and with an aluminum cap, using six-layered substrate. The verified finite element model was employed to determine the thermal resistance of FC-PBGA with a copper cap using four-layered and six-layered substrates. Experimental results demonstrated that FC-PBGA with a metal cap improves thermal performance by 35% over with a bare die. FC-PBGA with a copper cap slightly improves thermal performance from 2% to 2.8% over that of FC-PBGA with an aluminum cap. The thermal resistance of FC-PBGA with a four-layered substrate is reduced by 4.0% to 5.9% from that of FC-PBGA with a six-layered substrate, since the four-layered substrate contains less metal. The finite element numerical results negligibly differ from the experimental results by 6% to 8.1%. A finite element numerical methodology is here proposed to predict the thermal resistance of FC-PBGA. The methodology is effective in researching and developing new products or improving existing packages.  相似文献   

15.
16.
介绍了导电胶的基本分类以及导电胶的渗透理论;讨论了各向异性导电胶(ACA)、各向同性导电胶(ICA)、绝缘粘合剂(NCA)在倒装芯片互连结构中的应用;分析了导电胶互连的可靠性。最后展望了导电胶的发展趋势。  相似文献   

17.
A microwave (MW) preheating mechanism of anisotropic conductive adhesive film (ACF) has been introduced in order to reduce the bonding temperature for flip chip technology. Thermal curing of epoxy shows a very sluggish and non-uniform curing kinetics at the beginning of the curing reaction, but the rate increases with time and hence requires higher temperature. On the other hand MW radiation has the advantage of uniform heating rate during the cycle. In view of this, MW preheating (for 2/3 s) of ACF prior to final bonding has been applied to examine the electrical and mechanical performance of the bond. Low MW power has been used (80 and 240 W) to study the effect of the MW preheating. It has been found that 170 °C can be used for flip chip bonding instead of 180 °C (standard temperature for flip chip bonding) for MW preheating time and power used in this study. The contact resistance (0.015–0.025 Ω) is low in these samples where the standard resistance is 0.017 Ω (bonded at 180 °C without prior MW preheating). The shear forces at breakage were satisfactory (152–176 N) for the samples bonded at 170 °C with MW preheating, which is very close and even higher than the standard sample (173.3 N). For MW preheating time of 2 s, final bonding at 160 °C can also be used because of its low contact resistance (0.022–0.032 Ω), but the bond strength (137.3–145 N) is somewhat inferior to the standard one.  相似文献   

18.
19.
In this work, thermal cycling (T/C) reliability of anisotropic conductive film (ACF) flip chip assemblies having various chip and substrate thicknesses for thin chip-on-board (COB) packages were investigated. In order to analyze T/C reliability, shear strains of six flip chip assemblies were calculated using Suhir’s model. In addition, correlation of shear strain with die warpage was attempted.The thicknesses of the chips used were 180 μm and 480 μm. The thicknesses of the substrates were 120, 550, and 980 μm. Thus, six combinations of flip chip assemblies were prepared for the T/C reliability test. During the T/C reliability test, the 180 μm thick chip assemblies showed more stable contact resistance changes than the 480 μm thick chip assemblies did for all three substrates. The 550 μm thick substrate assemblies, which had the lowest CTE among three substrates, showed the best T/C reliability performance for a given chip thickness.In order to investigate what the T/C reliability performance results from, die warpages of six assemblies were measured using Twyman–Green interferometry. In addition, shear strains of the flip chip assemblies were calculated using measured material properties of ACF and substrates through Suhir’s 2-D model. T/C reliability of the flip chip assemblies was independent of die warpages; it was, however, in proportion to calculated shear strain. The result was closely related with material properties of the substrates. The T/C reliability of the ACF flip chip assemblies was concluded to be dominatingly dependent on the induced shear strains of ACF layers.  相似文献   

20.
This paper presents a comprehensive methodology to model the assembly process of flip chip on flex interconnections with non-conductive adhesives (NCAs). The methodology combines experimental techniques for material characterization, finite element modeling, and model validation. A non-conductive adhesive has been characterized using several techniques. A unique experimental technique has been developed to measure the cure shrinkage. A 2D axisymmetric finite element model is used for analysis of flip chip on flex package with the non-conductive adhesive (NCA), which takes into account assembly force, cure shrinkage, adhesive modulus buildup, removal of assembly force, and cooling down to room temperature. The relationship between the bump contact resistance and the bump pressure has been established through the development of a dedicated experimental setup, which uses a micro-force tester combined with a digital multimeter and a nano-voltmeter. The process modeling has been validated by comparing the predicted bump contact resistance value and the measured bump contact resistance value after assembly process. The approach developed in this paper can be used to provide guidelines with respect to adhesive material properties, assembly process parameters, and good reliability performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号