首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
垂直矩形窄通道换热特性实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文以去离子水为工质进行实验,研究垂直矩形窄通道换热特性。采用单侧壁面加热,改变工质流动参数,分析沿流动方向的壁面温度分布特性和测温点处的局部换热系数。实验表明:以对流沸腾为主的阶段,换热系数随着质量流速的增加而增加,入口温度对于换热系数基本没有影响;当干度χ0.1时,换热系数随着干度的增加而降低,当干度χ0.1时,换热系数随着干度的增加而基本保持不变。以核态沸腾为主的阶段,换热系数随干度的增加而略微上升,随入口温度的升高而增加。  相似文献   

2.
孙佳  林宇豪  李蔚 《制冷学报》2023,(6):77-84+117
非均匀润湿表面对流动沸腾过程中的流动模式和传热机制有重要影响。本文以去离子水为工质,实验研究了矩形微通道内硅表面和润湿异质性表面的过冷流动沸腾换热特性。通道横截面为0.5 mm×5 mm,过冷流动沸腾的质量通量分别为300、400 kg/(m2·s),热流密度在30~300 kW/m2的范围内。实验在大气压下进行,过冷度为10 K。对比了与流动方向垂直(HC)和平行(HP)的疏水图案,讨论了不同热流密度、质量通量等工况下的硅表面和润湿异质性表面垂直向上流动沸腾,分析了不同工况下过冷沸腾的沸腾曲线、平均传热系数和两相流流型。结果表明:润湿异质性表面的流动沸腾换热表面传热系数最大提高了39.55%,换热机制主要为核态沸腾。  相似文献   

3.
针对CO2作为制冷剂在微细通道内流动沸腾换热进行了实验与理论研究,采用红外成像观测与换热系数实验研究定量与定性的分析了热流密度:2~35 kW/m2,饱和温度:﹣10 ℃ ~15 ℃工况时,内径为1 mm、2 mm圆管内的换热系数。实验结果表明:热流密度的增加强化了微细通道内工质核态沸腾换热,使换热系数得到显著提高;换热系数随饱和温度非单调变化,饱和温度较高时,越接近CO2临界温度其换热系数随饱和温度升高而增加,当饱和温度在低温工况时换热系数则随其降低而增加,换热过程中发生干涸干度随饱和温度升高而单调降低。  相似文献   

4.
建立了一个窄缝宽度为1-3mm窄缝通道液氮传热实验装置,并对液氮窄缝传热进行了实验研究,在不同结构尺寸的三组窄缝结构中进行了大气压下饱和态及过冷态液氮传热实验,实验结果显示窄缝长度对饱和态液氮在窄缝中的传热的影响比较大,随着窄缝长度的增加,传热中的换热系数有较大影响,相对而言,实验范围中窄缝厚度对窄缝传热的影响很小,且窄缝中的换热系数随热流的增加会有所增大。  相似文献   

5.
为研究流体物性、流动和换热过程的状态参量对微通道内沸腾换热特性的影响规律,本文采用去离子水和无水乙醇在当量直径为0.293 mm的矩形微通道进行了不同质量流量和热流密度条件下的沸腾换热实验研究,通过对实验数据的计算和处理,分析总结了流体的热物性、质量流量、热流密度、干度和Bo数等参量对沸腾换热系数的影响规律。结果表明:沸腾换热系数随着热流密度、干度和Bo数的增大而降低,核态沸腾占主导地位;相同的质量流量和热流密度条件下,去离子水的沸腾换热系数明显高于无水乙醇的沸腾换热系数,并且前者的换热系数随质量流量的增大而增大,而后者变化不明显。根据考虑了通道尺寸效应及流体物性参量总结出的换热系数关联式进行了计算,计算结果对去离子水和无水乙醇的平均绝对误差分别为14.2%和16.6%,可认为该关联式适用于微通道内沸腾换热系数的预测。  相似文献   

6.
为了了解矩形窄通道内流动沸腾及传热现象的机理,建立了单面加热竖直矩形窄通道可视化流动沸腾换热实验台进行了实验。实验结果表明:矩形窄通道流动沸腾过程的换热系数存在最大值;随着干度的增加(即热流密度的增加)其换热系数逐渐降低,转为以液膜蒸发为主的流动沸腾换热,此时需控制热流密度,避免干涸现象的发生。  相似文献   

7.
针对芯片级散热场景,设计并搭建了两相环路热虹吸实验系统(TPLT),以R245fa作为工质,在冷凝器入口冷水温度为35℃、热流密度为10—162 W/cm2的工况下,研究了充液率对系统运行特性的影响,以及沟槽宽度为0.2—1.2 mm的连通平行微小通道(IPM)与平行微小通道(PPM)的沸腾换热性能。结果表明:40%是系统的合适充液率,过高的充液率导致冷凝器内部积液产生额外的蒸发器入口过冷度,过低的充液率则无法提供足够的循环流量;由于蒸发器水平放置时,TPLT系统流量启动存在滞后性,其瞬态启动特性会影响微小通道的稳态换热性能;0.2 mm槽宽的连通微小通道(IPM02,命名方式下同)具有较好的核态沸腾换热性能,因此启动阶段不存在温度过冲;最高测试热流密度下,IPM02和IPM07的传热系数相比于PPM分别提升约11%和5.7%,IPM12的传热系数则反而低于PPM。  相似文献   

8.
为实现微小空间高效散热,本文以去离子水为工质,实验研究了工质流经高度和直径均为500μm的微圆柱组成的叉排微柱群通道时的饱和沸腾换热特性,并采用高速摄像机记录了通道内不同加热功率的气液两相流型,实验参数设定质量流速为341~598.3 kg/(m~2·s),热流密度为20~160 W/cm~2,蒸气干度为0~0.2。结果表明:随着热流密度增大,局部沸腾换热表面传热系数近似单调递减。在低干度区,局部沸腾换热表面传热系数随着质量流速的增加而增大,随着蒸气干度的增加而减小;受过冷沸腾气泡影响,工质进口温度越低,局部沸腾换热表面传热系数越大;随着热流密度增大,微柱群通道流动沸腾气泡流型依次为:泡状流、环状流,且泡状流区的局部沸腾换热表面传热系数明显高于环状流区。  相似文献   

9.
本文对水平细通道内CO_2流动沸腾换热过程中流态及其转变特性进行理论分析和可视化实验研究。根据可视化实验结果,更新了CO_2在低蒸发温度下的理论流动状态预测模型。实验工况为:热流密度(7. 5~30 k W/m2)、质量流率(50~600kg/(m2·s))、饱和温度(-40~0℃)、干度(0~1)、内径(1. 5 mm)。理论分析表明:质量流率对换热过程中经历的流态形式有决定性作用,热流密度对环状流-干涸区域、干涸区域-雾状流边界转变曲线影响较大,饱和温度对流态转变具有重要影响。可视化研究表明:基于理论流态图对于CO_2在细通道内流动沸腾换热的流态能够较好的预测,也能反映不同工况下流态的变化趋势,但理论流态图对干涸区域和雾状流区域预测偏差较大;在实验数据的基础上,增加了液气黏度比的无量纲因子,并提出一种新的临界热流密度预测模型。在考虑质量流率和热流密度影响的情况下,根据更新后临界热流密度预测模型和实验数据,引入沸腾数Bo对理论流态图中环状流-干涸区域、干涸区域-雾状流及间歇流/弹状流-环状流边界转变曲线进行了更新,可视化研究获得的流态数据中89. 4%符合更新后的CO_2理论流态预测模型。  相似文献   

10.
R404A在小管径管内流动沸腾换热特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
R404A在小管径管内的流动沸腾换热过程是一个极其复杂的物理现象。目前对R404A换热特性的研究大多集中在大管径上,对小管径换热特性的研究较少,且对不同实验现象的机理分析也不尽相同。因此R404A在小管径管内换热特性的理论研究仍需要大量具体的实验数据来支撑。本文通过搭建小管径内螺纹铜管蒸发实验台,研究R404A在小管径管内流动沸腾换热过程中不同热流密度、不同蒸发干度、不同质流密度、不同饱和温度对表面传热系数的影响,研究表明:热流密度、干度、质流密度、饱和温度均对R404A在小管径管内换热特性的影响较大,干涸现象发生前后这些因素产生的影响也不同。此外,这些因素对管内干涸现象发生的起始干度、沸腾主要换热形式以及干涸现象是否发生具有直接影响。  相似文献   

11.
对R134a在水平强化管(Φ25 mm)外核态池沸腾进行了实验研究。通过Wilson图解法求得管内换热准则关系式,通过改变蒸发温度(5.6℃,0℃,-2℃,-4℃,-6℃,-8℃)和热流密度(4~55 k W/m2),得到了管外沸腾换热系数随热流密度和蒸发温度变化的规律。实验表明,管外沸腾换热系数随着热流密度和蒸发温度的升高而增加。结合实验数据,提出了一个新的管外池沸腾换热关联式,该关联式与实验数据点的偏差显示,95%的数据点的相对误差在±20%以内。  相似文献   

12.
微细通道换热器不仅体积换热系数大、换热效率高,而且具有优良的耐压性能、较强的抗腐蚀性、紧凑的结构及相对低廉的价格,已成为相关领域的一个研究热点。本文从微细通道换热器内流体流动摩擦特性,流体的单相对流换热、凝结换热、沸腾换热,临界热流密度,微细通道换热器结构的优化,结霜问题及其在制冷空调系统的应用等方面,对微细通道换热器进行较为详细的综述,以期为相关的研究领域提供有价值的参考。  相似文献   

13.
为了研究重力场对流动沸腾临界热流密度的影响,搭建了两相沸腾换热实验系统。以蒸馏水为工质,采用单侧加热的窄缝通道,通过改变质量流速、入口过冷度和重力场与加热方位的夹角,考察不同加热方位临界热流密度特性和实验段流阻特性。分析了质量流速、入口过冷度、加热方位对流动沸腾临界热流密度的影响,并将实验数据与Ivey-Morris模型、Sudo模型和Wojtan模型的计算值进行了验证对比。结果表明:加热面呈0°放置时的临界热流密度最大,呈180°放置时最小,质量流速和入口过冷度的增大会加大临界热流密度。Sudo模型对本实验条件不适用;Ivey-Morris模型和Wojtan模型在加热面呈0°放置时与实验值符合情况良好,相对误差约在30%以内,其他加热方位时,计算值均大于实验值。  相似文献   

14.
本文对水平微细圆管内R290流动沸腾的流态进行了可视化研究,分析不同管径下流动沸腾换热主要流态形式及影响因素,基于理论流态图对比分析流态转变规律。实验工况:热流密度1~70 kW/m2,质量流率50~1 020 kg/(m2·s),饱和温度-10~25℃,管径1~3 mm,干度0~1。实验中共观察到8种R290微细通道内流动沸腾换热流态,其中间歇流和波状流为3 mm管的主要换热流态,弹状流和环状为1 mm管的主要换热流态;实测流态图中3 mm管的泡状流、混状流,2 mm管的泡状流,1 mm管的弹状流与D&W流态转变准则较为吻合,而2 mm管和1 mm管的离散流区域匹配性较差;管径的变化对流态有重要影响,随着管径的减小,气泡形状、流态形式、流态分布及流态转变曲线均发生变化,管径微尺度效应出现。  相似文献   

15.
临界热流密度(CHF)是流动沸腾过程中一个重要的参数,在旋转平台上以蒸馏水为工质,采用单侧加热的矩形通道,对逆向载荷下两种不同加热方位下的流动沸腾CHF特性进行了实验研究,获得了逆载下发生临界换热时的质量流速、入口压力、实验段压降和壁温的变化特性。研究讨论了逆载、入口温度、质量流速和加热方位对CHF的影响。结果表明:临界换热现象发生时,壁温迅速上升,有效热流密度迅速减少,实验段压降增大,质量流速减小;逆载和质量流速越大,CHF越大;入口温度越高,CHF越小,同时加热方位对CHF也有明显影响。  相似文献   

16.
为探究低温流体池内核态沸腾机理,对液氮池内核态沸腾进行了计算流体力学(CFD)建模及实验研究。除了探究过热度和热流关系,重点分析过热度对气泡脱离直径和频率影响。根据实验观测,将核态沸腾过程分为3个阶段:低热流阶段;过渡沸腾阶段;完全核态沸腾(FDNB)阶段。基于得到的沸腾过程气泡直径及频率,构建了核态沸腾CFD数值模型,得到的过热度及热流密度关系,与实验测量得到的数据吻合。  相似文献   

17.
采用溶胶凝胶法制备了以软脂酸为芯材,二氧化硅为壳材的纳米相变胶囊,分析测试表明所合成的胶囊呈现为核壳结构分明的规则球形结构,且具有良好的储热能力。选用聚二甲基硅氧烷疏水改性,制备了稳定分散的丙酮基纳米胶囊潜热型功能流体,热导率及粘度测试表明其可以应用于强化换热。微小通道过冷流动沸腾实验研究发现,纳米相变胶囊的加入不但可以阻止气泡的合并,而且可以加速沸腾气泡的破裂,揭示了除提升热导率及提供潜热之外的另一强化沸腾换热的原因。  相似文献   

18.
何宽  柳建华  余肖霄 《制冷学报》2019,40(5):118-123
本文对R290在5mm小管径内的流动沸腾换热特性进行实验研究,重点研究热流密度、质量流率及饱和温度对沸腾换热表面传热系数的影响。实验工况为:热流密度10~60 k W/m2、饱和温度15~25℃、质量流率50~200 kg/(m2·s)、干度0. 1~0. 9。结果表明:增加热流密度可实现强化换热,提高表面传热系数,使干涸现象提前发生,并加剧干涸;质量流率在低干度区间对表面传热系数的影响较小,在中干度和高干度区间表面传热系数与质量流率分别呈正相关;当热流密度较低时,在中干度区间,增大饱和温度会使表面传热系数降低;而在较高的热流密度下,增大饱和温度明显引起表面传热系数的上升。  相似文献   

19.
为强化印刷电路板式换热器(PCHE)中超临界LNG强化换热特性,基于处理表面强化换热技术,提出一种正弦型凹穴矩阵微通道模型,并对超临界LNG在其内部流动换热特性进行数值模拟研究。研究了不同凹穴结构阵列微通道流动换热性能和入口质量流量、正弦型凹穴高度和重力对范宁摩阻系数、对流传热系数及综合换热评价因子的影响,最后引入壁面平均涡强对正弦型凹穴局部流动与换热机理分析。结果表明:正弦型凹穴能够强化超临界LNG换热特性,换热效果与入口质量流速成正比,且环向横置阵列优于环向竖置阵列;凹穴高度增加,微通道中流动传热系数也随之增大;通过对比施加不同方向的重力对通道的流动换热影响,施加逆流方向的重力可以强化正弦型凹穴微通道的流动换热特性;结合综合换热评价因子分析,正弦型凹穴能够显著强化通道流动换热性能,并且凹穴高度0.2 mm阵列微通道换热性能最佳;通过壁面平均涡强分析正弦型凹穴通道局部流动换热机理,其能够产生强力漩涡使边界层变薄,对主流区域恶化程度低,能够加速热量由壁面向主流区传递,实现微通道表面强化换热。  相似文献   

20.
利用FLUENT软件,采用VOF两相流模型对制冷剂R30在横截面为0.5 mm×0.5 mm、长为500 mm矩形微通道内的沸腾换热进行了数值模拟。以制冷剂入口温度、压力和质量流率作为变量,得出了典型流型、壁面平均温度、换热系数、截面含气率等参数的变化规律。结果表明,提高制冷剂入口温度和压力有利于增强R30在微通道内的沸腾换热,换热系数随着质量流率的增大而增大,随着截面含气率的增大而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号