首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
陈玉娟  李焕娜 《机床与液压》2016,44(15):178-183
针对强噪声干扰下滚动轴承故障特征难以提取的问题,提出一种变分模态分解和Teager能量增强谱的滚动轴承故障诊断方法。该方法首先通过变分模态分解(Variational Mode Decomposition,VMD)将非平稳的轴承故障振动信号分解成一系列平稳的窄带分量;然后根据峭度-相关性最大准则挑选包含故障特征信息最丰富的窄带分量作为主分量;最后对选取的主分量进行Teager能量增强谱,提取滚动轴承的故障特征。通过仿真和实例分析的结果表明:该方法能有效地提取出滚动轴承早期故障特征,且能够抑制强烈的噪声干扰和增强故障冲击特征,优于传统包络谱分析和基于经验模态分解(Empirical Mode Decomposition,EMD)和Teager能量谱的方法的分析结果。  相似文献   

2.
针对传统特征提取的故障诊断技术不能充分表征振动信号故障特征导致故障识别精度不高的问题,提出一种优化VMD和MHA-DenseNet的滚动轴承故障诊断方法。首先,采用麻雀搜索算法(SSA)对变分模态分解算法(VMD)的相关参数组合进行寻优;其次,采用优化VMD分解滚动轴承故障信号,获得的本征模态函数分量(IMF)作为神经网络输入数据;最后,构建多头注意密集神经网络(MHA-DenseNet)故障诊断模型来有效学习故障数据中的特征信息并完成滚动轴承的准确诊断。实验结果表明,提出的故障诊断方法识别率高达99.03%,相较于对比实验该方法提高了故障诊断的准确率。  相似文献   

3.
针对轴承早期故障信号非线性、非平稳和故障特征难以提取的问题,提出一种变分模态分解(VMD)与流形学习相结合的特征提取方法.该方法应用VMD将信号分解成包含不同故障信息的固有模态分量,然后从中提取特征并构建高维的混合域特征集.最后,应用流形学习等度规映射算法将高维的特征集约简为故障区分度更好的低维混合域特征集,并利用支持...  相似文献   

4.
针对滚动轴承早期故障的有效识别,提出了一种基于VMD瞬时能量与GA优化的RBF神经网络的滚动轴承故障诊断方法,可以有效对滚动故障做出诊断。首先,VMD将滚动轴承振动信号进行分解成合适数目的本证模态函数;其次,计算本证模态函数分量的瞬时能量并组成特征向量;最后,将特征向量输入到GA优化的RBF神经网络实现轴承故障识别。通过滚动轴承故障诊断实验对该方法进行验证。结果表明,该方法识别滚动轴承故障的准确率为96.43%,较默认参数的RBF神经网络和EEMD瞬时能量与GA-RBF神经网络有明显的提高,证明了所提方法的可行性。  相似文献   

5.
为了在非线性、非平稳的滚动轴承故障振动信号中有效提取出敏感的故障特征,提出了基于变分模态分解(VMD)与时间序列分析相结合的特征提取方法。首先通过VMD将原始信号分解为不同预设尺度的本征模态分量(IMF),对各个IMF分量建立时间序列预测模型,通过叠加重构得到最终的预测模型,比较评价指标确定最优参数的选取。最后,通过仿真信号与滚动轴承实际故障数据分析,并与经验模式分解(EMD)进行对比,结果表明该方法能够有效的提取到故障特征频率。  相似文献   

6.
针对滚动轴承早期故障信号微弱、故障特征难以提取,导致故障分类效果差的问题,提出了一种基于改进人工鱼群(AFSA)进行参数优化的变分模态分解(VMD)和多特征向量融合的极限学习机(ELM)的滚动轴承故障诊断方法。首先,将改进后的AFSA对VMD算法的重要参数(分解个数K和惩罚因子α)进行自动寻优,适用度函数采用最小包络谱熵;其次,提取经AFSA-VMD分解后的包络谱熵最小的内蕴模态函数(IMF)分量作为最优分量,通过计算最优IMF分量的均方根值和峰值构造第一层特征值向量,计算最优IMF分量的样本熵、峭度和均方根构造第二层特征值向量;最后,将特征值向量送入极限学习机ELM进行滚动轴承故障的训练分类。试验结果表明本文算法具有良好的故障诊断效果且最终可实现98.25%的分类准确率和93.36%的实际诊断精度。  相似文献   

7.
陈维望  李军霞  张伟 《机床与液压》2022,50(24):159-164
滚动轴承早期故障信号易受噪声干扰,故障冲击成分难以提取,故障识别困难。为从多角度提取故障轴承振动信号特征参数,利用变分模态分解(VMD)将振动信号分解为若干本征模态分量(IMFs),基于包络熵、相关系数、峭度筛选IMF分量。提取所选IMF的时域和频域特征、信号VMD能量熵及各IMF能量比组成特征向量,从时域、频域和能量角度反映故障信息。使用麻雀搜索算法(SSA)优化SVM参数,确定最优参数,克服参数选择难题。将样本特征向量输入SSA-SVM中进行故障分类,轴承故障实验数据表明:该方法故障识别平均准确率在98.71%以上;与单一域特征相比,该方法对故障类型和损伤程度识别效果更佳。  相似文献   

8.
针对难以识别的轴承运行振动信号中的状态特征,提出变分模态分解(VMD)和基于峭度准则排列熵结合的滚动轴承故障诊断方法.VMD分解算法受限于分解参数,分析参数对结果的影响,并通过定一求二的方法确定VMD的参数,使用设置好参数的VMD算法分解4种滚动轴承状态内圈故障、外圈故障、滚动体故障以及正常状态下的振动信号,由于滚动轴...  相似文献   

9.
为有效提取非平稳性、复杂性的滚动轴承振动信号特征,提出一种基于变分模态分解、改进烟花算法(IFWA)优化支持向量机(SVM)的滚动轴承故障诊断方法。利用VMD对原始信号进行分解,计算得到各IMF的样本熵,将原始信号的时域特征与其结合组成特征矩阵。为提高故障诊断效率,采用IFWA优化SVM,建立IFWA-SVM模型。使用训练集特征矩阵训练诊断模型,实现滚动轴承的故障诊断。利用实测信号验证该方法,并与粒子群算法优化进行比较。结果表明:利用该方法进行诊断,正确率提高了3.33%、训练时间缩短了21.55 s,验证了该方法的可行性。  相似文献   

10.
对工业设备中的滚动轴承进行故障诊断时,被测信号经常受到高频噪声和间歇噪声的干扰,导致信号分解和特征提取的精度较低。为解决此问题,提出一种基于总变差降噪(TVD)和改进的局部均值分解(LMD)的方法。采取总变差方法对信号进行降噪处理,选取合适的正则化参数,使得降噪后的信号在具有高信噪比的同时具有较低的均方根误差。对降噪后的信号进行局部均值分解,根据互相关系值和峭度选取最佳的PF分量,进行包络分析,实现对故障特征的提取。对实测信号进行实验验证。结果表明:所提方法可以达到有效的降噪效果,能准确提取复杂振动信号中的故障特征。  相似文献   

11.
为了提高变分模态分解(VMD)对滚动轴承微弱故障特征提取的准确性,提出了一种基于参数优化VMD与奇异值分量及其熵相结合的滚动轴承故障诊断方法。该方法通过寻优算法确定VMD的模态数K和二次惩罚因子α;根据余弦-标准差指标提取VMD典型本征模态分量(IMF);计算IMF奇异值及其熵,并利用计算结果分别判断滚动轴承的不同故障状态。结合美国西储大学轴承振动信号数据,实验结果表明:相比经验模态分解奇异值故障诊断方法,基于参数优化VMD奇异值故障诊断方法能更明显地识别滚动轴承的不同故障类型,为区分滚动轴承微弱故障提供了一种可行的诊断思路。  相似文献   

12.
为了解决轴承故障特征提取中经验模态分解(EMD)出现的模态混叠现象,提出一种集合经验模态分解(EEMD)、快速谱峭度选频和共振解调技术相结合的滚动轴承故障诊断方法。对原始振动信号进行EEMD处理,分解为多个本征模态函数(IMF);将符合峭度准则的IMF分量筛选出来,对其进行信号重构,对重构信号进行快速谱峭度计算得出快速谱峭度图,从图中选出最优频带中心和带宽,确定FIR带通滤波器设计参数;最后通过共振解调技术对滤波信号进行包络分析,得出包络谱确定滚动轴承故障特征信息。通过滚动轴承实验分析,验证了此方法的可行性。  相似文献   

13.
杨伟  王红军 《机床与液压》2019,47(16):175-179
针对滚动轴承早期微弱故障湮没在高强背景噪声中、造成故障特征信息提取困难的特点,提出一种改进的共振稀疏分解方法。首先采用变分模态对信号去噪,根据峭度-相关系数准则选取包含故障特征信息量多的分量进行信号重构;然后对重构后的信号进行粒子群优化的共振稀疏分解;最后对分解得到的低共振分量进行包络分析,提取故障特征频率。实验结果证明了该方法比传统共振稀疏分解更能有效地提取故障特征频率,有效地减少了干扰成分。  相似文献   

14.
向玲  鄢小安 《机床与液压》2015,43(11):178-181
给出了改进的固有时间尺度分解方法 (Improved Intrinsic Time-scale Decomposition,简称IITD)及端点效应评价指标。为了实现滚动轴承故障的精确诊断,提出了一种基于IITD和峭度准则的包络解调方法。该方法首先利用IITD将振动信号分解为一系列固有旋转分量(Proper Rotation Component,简称PRC),然后利用相关系数-峭度最大准则挑选包含故障信息最丰富的PR分量进行包络谱分析。为了验证该方法在应用中的有效性,针对轴承内圈故障,与EMD包络谱分析进行了比较,结果表明:该方法可以有效地提取滚动轴承故障特征信息,能够实现滚动轴承故障的精确诊断。  相似文献   

15.
滚动轴承故障信号的特征容易被强噪声淹没,难以提取信号中的冲击成分。针对这一问题,提出多点最优调整的最小熵解卷积(MOMEDA)优化的ACCUGRAM算法,并应用于滚动轴承故障诊断。首先利用MED算法对原始信号进行滤波预处理,突显信号中的有效循环冲击成分,提高MOMEDA优化ACCUGRAM算法中频带选择的分类精度,选择最佳的带宽和中心频率,最后对获得包含信息量最大的频带进行故障特征频率的提取和轴承的故障诊断。仿真和试验数据分析结果表明:该方法能够有效提取信号中的周期性冲击特征,具有一定的实用性。  相似文献   

16.
针对从汽轮机轴承的非线性、非平稳振动信号中提取故障特征困难而导致诊断识别率低的问题,提出一种基于MIGA-VMD和排列熵、t-SNE的特征提取方法.变分模态分解(VMD)在轴承故障诊断中的分解效果很大程度上取决于分解个数和惩罚参数的选取.为实现VMD相关参数的最优选择,采用多岛遗传算法(MIGA)对VMD参数进行优化....  相似文献   

17.
鉴于广义S变换继承了短时Fourier变换、小波变换和标准S变换的所有优点,同时也弥补了它们存在的不足,具有良好的自适应的独特特性,提出了一种基于广义S变换的滚动轴承故障诊断方法,并与传统的短时Fourier变换、Wgner-Ville分布、小波变换、标准S变换等时频分析方法进行了对比分析。仿真研究表明,广义S变换具有明显的优势,能灵活地通过调节参数来自适应地调节窗函数的宽度,以便达到最佳的时频分辨率。最后,滚动轴承故障实验研究进一步验证了提出的方法的有效性。提出的方法能有效地反映不同轴承故障的特征频率,为滚动轴承故障诊断提供了一种有效的方法。  相似文献   

18.
提出一种滚动轴承故障诊断新方法——全矢Hilbert包络解调谱分析。Hilbert变换对于滚动轴承故障信号有良好的调制解调效果,但单依赖传统的单通道信号会产生信息遗漏,对诊断的准确性造成影响,基于同源双通道信息融合的全矢谱技术,能够更加全面、准确地反映设备振动特性。将全矢谱技术与Hilbert解调相结合,并进行滚动轴承外圈故障的诊断实验,证实了全矢Hilbert包络解调谱分析的有效性和先进性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号