首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
采用固相反应法制备Bi0.5Na0.5TiO3-SrZrO3(BNT-SZ100x,x=0-0.15)无铅陶瓷,通过XRD、SEM和电致应变等手段对其进行表征。XRD分析表明样品的第二相为纯钙钛矿型。铁电致应变曲线表明:当SZ添加到BNT陶瓷中,铁电顺序被破坏。当添加5%(摩尔分数)SZ时,剩余极化强度和压电常数的最大值分别为32μC/cm2和102 pC/N。BNT-SZ9样品的电致应变(Smax)和归一化应变(Smax/Emax=d*33)的最大值分别为0.24%和340 pm/V。  相似文献   

2.
研究了(1-x)(0.96Bi_0.5Na_0.5TiO_3-0.04BaTiO_3)-x(0.98K_0.5Na_0.5NbO_3-0.02LiTaO_3)(BNTBT-KNNLT)体系在0≤x≤0.07这一组分区域的结构和性能.X射线衍射谱发现,这一系列组分在室温下形成纯钙钛矿型固溶体,没有其他杂相产生.(111)峰的峰位和峰形随组分的变化有规律的变化.随着KNNLT组分的加入,压电及介电等性能有比较明显的改变.压电性能随KNNLT的加入出现最大值.当x=0.02时,压电常数d_(33)=125 pC/N.介电常数在室温下随组分的增加而增加.电滞回线的结果显示,尽管在BNTBT中掺杂了KNNLT,这一系列的压电陶瓷仍然具有较大的矫顽场.当x=0.02时,室温下介电常数和剩余极化强度分别为:ε_r=1455,P_r=32.3 μC/cm~2.实验结果表明适量的KNNLT掺杂进BNTBT中可以改善BNTBT的压电和介电性能.  相似文献   

3.
采用传统固相法制备了CeO_2掺杂0.9Bi_4Ti_3O_(12)-0.1K_(0.5)Na_(0.5)NbO_3(BTO-KNN)铋层状陶瓷材料。系统研究了CeO_2掺杂对BTO-KNN基陶瓷物相结构、微观结构以及电性能的影响。结果表明:所有陶瓷样品均为单一的铋层状结构:BTO-KNN基陶瓷的压电性能随着CeO_2的掺杂而显著提高,损耗明显降低。当CeO_2掺量为0.75%(质量分数)时,样品具有最佳的电性能:d_(33)=28 pC/N,介电损耗tanδ=0.29%,机械品质因数Q_m=2897,剩余极化强度P_r=11.83μC/cm~2,且居里温度T_c高达615℃;研究结果表明CeO_2掺杂0.9Bi_4Ti_3O_(12)-0.1K_(0.5)Na_(0.5)NbO_3铋层状陶瓷是一种潜在的高温陶瓷材料。  相似文献   

4.
《铸造技术》2019,(4):331-335
采用两步烧结法制备了0.95(K_(0.5)Na_(0.5))NbO_3-0.05Ba(Zr_(0.05)Ti_(0.95))O_3无铅压电陶瓷,并研究了烧结工艺对陶瓷微观结构和电学性能的影响。结果表明,0.95KNN-0.05BZT可以在较宽的温度区间内使用两步烧结法制备,并且提高第一步烧结的温度以及延长第二步的保温时间可以改善0.95KNN-0.05BZT陶瓷的密度、压电性能和介电性能的作用。最佳工艺参数为1 190℃/10 min/1 050℃/15 h,其性能如下d_(33)=136.7 pC/N、k_p=50%、εr=1698和tanδ=0.023。  相似文献   

5.
采用传统固相反应制备了(1-x)(K0.5Na0.5)NbO3–xLiBiO3[(1–x)KNN–xLB](x=0,0.0005,0.001,0.002,0.004,0.006,0.008,0.010)压电陶瓷,并分析研究了其微结构及电性能。结果表明,LB 掺杂的 KNN 陶瓷主要形成了钙钛矿结构,没有检测到第二相的存在,并且陶瓷的相结构出现直接由正交相过渡到立方相的"反常"转变;随着LB 掺杂量的增加,晶粒尺寸逐渐细化,陶瓷的压电常数d33、平面机电耦合系数kp先略有增加后显著下降,且分别在x=0.002和 x=0.001时达到最大值,分别为115pC/N和0.2701;陶瓷的介电常数εr随x增大先增加后略有降低,当 x=0.006时获得最大值,为871.8。  相似文献   

6.
采用传统陶瓷工艺制备了镧掺杂(Na0.5Bi0.5)TiO3无铅压电陶瓷,研究了材料的结构、介电和压电性能.发现镧掺杂有利于生成稳定的钙钛矿结构,促进了晶粒生长.镧掺杂(Na0.5Bi0.5)TiO3陶瓷表现出明显的弛豫特性,当镧掺杂量为5mol%时,1200℃烧结样品室温下的介电常数从630提高到855,介电损耗从5.2%减小到3.3%.适量的镧掺杂大幅降低了材料的电导率,最佳的掺杂量为1 mol%,测量温度为75℃时,该配方1200℃烧结样品的电导率σ仅为7.75148×10-13S·cm-1,同掺杂前的9.50827×10-11 S·cm-1前相比减小了3个数量级.  相似文献   

7.
采用传统固溶反应法制备了(K_xNa_(1-x))_(1-y)Li_yNb_(0.80)Ta_(0.20)O_3(x=0.40~0.60;y=0.03,0.035,0.04)系列无铅压电陶瓷,研究了其压电性能的温度稳定性。实验得出在研究的组分范围内,陶瓷的压电常数d_(33)可达到250 pC/N,k_p到达50%。在高达约325℃的老化试验中发现,尽管在室温下存在多型相变的影响,但陶瓷的d_(33)和k_p值几乎一直保持不变。而且,陶瓷的k_p值在-50℃到120℃的宽温度范围内几乎不受温度影响,显示了很好的温度稳定性。另外还从两相共存的温度范围对陶瓷的热稳定性能进行了讨论。  相似文献   

8.
以BaTiO_3-Na_0.5Bi_0.5TiO_3(BT-NBT)陶瓷系统为研究对象,采用固相法制备了(1-x)BT+xNBT(0.01<x<0.06)系统陶瓷.通过DSC、XRD、SEM等分析手段研究了NBT的加入量以及烧成气氛对BaTiO_3基PTCR陶瓷的显微结构及阻温特性的影响.研究结果表明:加入低含量(x<0.03)NBT时,能明显提高烧成陶瓷的居里温度(T_c),当加入x=0.01NBT时,T_c提高到150 ℃.氮气中烧成的陶瓷室温电阻率低于空气中烧成的,但其PTC效应减弱.  相似文献   

9.
采用传统的陶瓷制备方法,制备了一种钙钛矿型无铅压电陶瓷0.96[Bi_(0.5)(Na_(0.84)K_(0.16))_(0.5)(Ti_(1-x)Ta_x)O_3]-0.04SrTiO_3(简写为BNKT-ST-Tax)。研究了Ta对该体系陶瓷微观结构和压电介电性能的影响。结果表明:陶瓷材料均能形成纯钙钛矿固溶体,微量Ta不影响该体系陶瓷的晶体结构,但促进晶粒生长。随着Ta含量的增加,压电常数先增加后降低。在x=1.5%时,d_(33)=144pC/N,k_p=0.31为该体系陶瓷压电性能的最优值。当x=2.5%时电滞回线变得纤细,陶瓷向弛豫铁电体转变。随着Ta含量的增加,所得陶瓷的ε_r逐渐增大;tanδ先减小后增加,Td随Ta含量的增加向低温方向移动。  相似文献   

10.
铅基压电陶瓷在制备、使用及废弃处理过程中都会造成环境污染,随着环保意识的增强,无铅压电陶瓷必将逐步替代铅基压电陶瓷.Na0.5K0.5NbO3是一种很有潜力的无铅压电陶瓷,掺杂各种元素提升Na0.5K0.5NbO3陶瓷的压电性能成为当今研究热点之一.本研究以Ag2O、Na2CO3、K2CO3、Nb2O5为原料,经750 ℃焙烧分别合成了Na0.5K0.5NbO3和AgNbO3粉料,再经配料、混料与成型,在1060 ℃埋粉烧结,制备出Ag+掺杂的Na0.5K0.5NbO3无铅压电陶瓷(xAgNbO3-(1-x)Na0.5K0.5NbO3,ANKN),并在较宽成分范围内(Ag+含量,x=0~50 at%)系统研究了Ag+掺杂对ANKN陶瓷性能的影响.XRD结果表明,ANKN陶瓷的主相为钙钛矿型结构,当x>16 at%,开始出现K5.75Nb10.85O30杂相,随着Ag掺杂量的增加,杂相的衍射峰增强.电学性能测试结果表明,当x<20 at%,随Ag掺杂量的增加ANKN陶瓷的压电常数、介电常数等略有升高;当x>20 at%,ANKN陶瓷的各项性能均开始降低;Ag掺加量为x=16 at%时ANKN陶瓷性能最佳,压电常数d33达到110 pC/N,平面机电耦合系数kp为30%,相对介电常数εr为358,居里温度Tc为300 ℃.  相似文献   

11.
室温下用溶胶凝胶自蔓延燃烧法合成平均尺寸约50 nm的仿立方体结构K_(x )Na_(1-x )Nb O_3纳米粉体并制备成陶瓷,对陶瓷进行相结构、显微组织以及电性能的表征。XRD结果表明,K_(x )Na_(1-x )NbO_3陶瓷为纯的钙钛矿结构,且K_(0.5)Na_(0.5)Nb O_3陶瓷具有正交相和单斜相的混合相结构。SEM结果表明,所有陶瓷样品均为孪晶分布,且孪晶分布中小晶粒数随K~+含量的增加而减少。在室温下,晶粒尺寸均匀且具有最大密度的K_(0.5)Na_(0.5)Nb O_3陶瓷具有较优异的电性能:ε_r=467.40,tanδ=0.020,d_(33)=128 pC/N,k_p=0.32。K_(0.5)Na_(0.5)Nb O_3陶瓷的优良电性能说明溶胶凝胶自蔓延燃烧法合成的K_(0.50)Na_(0.50)Nb O_3粉体性能较好,且制备的陶瓷满足无铅压电材料应用。  相似文献   

12.
采用浆液合成法和加糖热解法分别合成了具有层状结构和正常钙钛矿结构的Na_0.5Bi_0.5TiO_3纳米粉体.两种粉体以不同比例混合烧结成瓷,性能测试表明,当以1:1的比例混合时,陶瓷的烧缩率达到最大值,击穿场强达到最大值,压电常数d_(33)=75×10~(-12) C/N.浆液合成法制备的粉体获得的陶瓷,压电常数达到最大值,d_(33)=88×10~(-12) C/N.加糖热解法制备的粉体获得的陶瓷d_(33)=65×10~(-12) C/N.两种方法制备的粉体及其混合所制备的陶瓷,均得到比较好的压电性能.  相似文献   

13.
由于Na,K在高温下容易挥发,因而采用普通陶瓷烧结工艺难以得到致密的碱金属铌酸盐系陶瓷,只能通过热压烧结制备高密度的铌酸钾钠(NaNbO3-KNbO3)系无铅压电陶瓷.本研究采用放电等离子烧结(SparkPlasma Sintering,SPS)技术,通过配料、研磨混料、焙烧、SPS烧结、退火工艺后,制备出白色略带黄色的Na0.5K0.5NbO3压电陶瓷试样.在烧结过程中,没有观察到明显的碱挥发,试样密度随烧结温度的增加而增大,860℃以上温度烧结时,试样的密度达到4.22g/cm3(为理论密度的92%).采用分步极化方法对试样进行极化,即先在高温下用低电压极化,再在低温下用高电压极化,极化后样品的压电常数d33为37pC/N~49pC/N.  相似文献   

14.
采用传统固相法对(1-x)K0.44Na0.52Li0.04Nb0.86Ta0.10Sb0.04O3-xSrTiO3压电陶瓷进行了钛酸锶掺杂改性研究.使用XRD并结合常规压电陶瓷性能测试手段对该体系的显微结构、压电、介电性能等进行表征.研究结果表明,随着SrTiO3加入量的增大,材料的居里温度和压电性能逐渐下降,材料的介电温度峰形逐渐变宽,出现弛豫现象;陶瓷烧结性能改善.致密度增加.  相似文献   

15.
采用同相合成及常压烧结法制备了铌酸钾钠(KNN)无铅压电陶瓷,利用阿基米德排水法测定陶瓷的密度,通过X射线衍射进行陶瓷的物相分析,使用扫描电镜(SEM)观察了陶瓷的表面形貌.分析了相组成、烧结温度和保温时间对陶瓷烧结性能的影响.结果表明:采用固相合成法制备的KNN无铅压电陶瓷为具有钙钛矿结构的固溶体;钾取代立方相NaNbO3中的钠使晶格发生畸变及晶格常数变大,引起了致密度下降、晶粒尺寸增大;在合适的温度范围内,延长保温时间,提高烧结温度有利于晶体的发育与长大;烧结温度过高或保温时间过长,在烧结过程中Na、K元素易挥发从而导致陶瓷致密度下降.  相似文献   

16.
采用固相法制备不同Zr含量掺杂的Ba Zr_(x )Ti_(1-x )O_3陶瓷,并对其晶体结构、显微形貌、介电和铁电性能进行研究。结果表明,所得陶瓷均为单一钙钛矿结构,未出现杂相。SEM分析表明,随Zr含量的增加,材料的晶粒尺寸显著长大,说明Zr对晶粒长大有促进作用。Zr含量对陶瓷的介电常数有明显的影响,当x=0.15时,ε_r最大,例如在频率为3 MHz时,ε_r达到4900左右。铁电性研究表明,随Zr含量的增加,存在漏电流增大的趋势,使得铁电性恶化。除x=0.15的样品外,其余组分样品的剩余极化强度均随着Zr含量的增加而呈下降趋势,而矫顽场则随Zr含量的增加而增大。  相似文献   

17.
改善烧结制度制备(Bi0.5Na0.5)TiO3-Ba(Ti,Zr)O3(简称BNT-BZT)系无铅压电陶瓷,能得到较高的致密度.该压电陶瓷具有良好的电学性能.电学性能的最佳成分点位于准同型相界附近四方相的区域,组成为(Bi0.5Na0.5)TiO3-xBa(TiyZr)O3x=0.09~0.12的范围内,此时具有最大的压电常数(d33=147pC/N)和室温介电常数(ε33T/ε0=881.4).BNT-BZT陶瓷体系的机电耦合系数Kp受BZT含量的影响较小,而BZT含量对机械品质因数Qm的影响较大.  相似文献   

18.
正东京大学化学研究所Pemg XIONG等人采用高压合成法制造Sr_(0.5-x)Co_xBi_(0.5)FeO_3,SXRD测定表明是钙钛矿型晶体,x=0.1~0.2时,由菱形六面体转变为正交系晶体。穆斯堡尔谱线表明,常温下固溶呈现异常高价位Fe~(3.5+)。Fe~(3.5+)当0.0≤x≤0.4时,出现电子不稳定性,发生3∶1CD(Fe~(3.5+)→3/4Fe~(3+)+1/  相似文献   

19.
采用固相合成法制备了(1–x)LiNbO3-x BiAlO_3(x=0,0.01,0.03,0.05,0.07)无铅压电陶瓷。研究了BiAlO_3对Li NbO_3陶瓷的物相结构、显微组织、介电及压电性能的影响。研究表明:当掺杂量为0.01时,所得陶瓷为纯相钙钛矿结构,当掺杂量超过0.03时出现杂相。所得陶瓷的相对密度均在96%以上,具有较好的致密度。随BiAlO_3含量的增加,晶粒尺寸略有增大。BiAlO_3的加入使复介电常数的共振峰有向低频方向移动的趋势。压电及介电性能的变化规律与晶粒尺寸变化一致,即随BiAlO_3含量的增加,d33和复介电常数的实部ε′均在x=0.07时出现最大值。因此,适量添加BiAlO_3可以增加LiNbO_3陶瓷的介电性能与压电性能。  相似文献   

20.
采用传统固相反应制备无铅反铁电陶瓷材料(Bi0.47Na0.47Ba0.06)(La(1-x)Zrx)TiO3(BNT-LZT,x=0、0.02、0.04、0.06),研究了材料的相结构、介电特性及储能性能。结果表明:此陶瓷的极化强度Ps、Pr、介电常数εr,随Zr含量的增加而减小,能量储存性能也随之改变。P-E电滞回线显示,当x=0.02时,此材料的Pmax为37.5μC/cm2,Wmax为1.58 J/cm3,电场强度Ec为83.4 kV/cm。BNT-LZT材料是很有前景的无铅反铁电储能材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号