首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
研究了热处理前后Ti1.4V0.6Ni合金的结构和电化学性能。采用X射线粉末衍射(XRD)方法分析合金的结构。电化学特性包括放电容量、循环稳定性和高倍率放电性能等。XRD衍射分析表明,在590°C热处理30min的合金,主要包含正二十面体准晶相、Ti2Ni(FCC)相、V基固溶相(BCC)和C14Laves相(Hex)。电化学测试显示,热处理后在30°C和放电电流密度为30mA/g的条件下,合金电极的最大放电容量可达330.9mA·h/g,并且循环稳定性和高倍率放电性能也得到改善。此外,通过电化学阻抗和合金内部氢的扩散系数研究了合金电极的动力学性能。  相似文献   

2.
采用真空电弧炉(在氩气保护下)制备Zr1-xTixMn0.4Cr0.4Ni1.2贮氢合金,通过XRD、SEM和恒流充放电研究了合金的相结构、形貌和电化学性能.结果表明:Ti为C14型Laves相的稳定性元素,随着Ti含量的增加,C14型Layes相增多,C15型Laves相减少.当x=0.1时,合金综合性能最好,表现出良好的活化性能、循环稳定性能和高倍率放电特性,在放电电流密度300 mA/g的条件下,充放电循环50次,合金保持稳定的放电容量.当x>0.1时,合金放电容量下降.Ti的加入使合金氢化物稳定性降低,加入少量Ti,有利于合金的放电容量和高倍率放电性能的提高.  相似文献   

3.
研究了Zr0.8Ti0.2(Ni0.6Mn0.2V0.2Cr0.05)x(x=1.8~2.4)贮氢合金中化学计量x对晶体结构和电化学性能的影响。结果表明:随着x值的增大,合金中C14相含量逐渐减少,C15相含量逐渐增加,C14和C15相的晶格常数均线性减小;随着x值的增大,合金电极的活化性能提高,高倍率放电性能和放电容量均先升高,至x=2.2时达到最大值(最大放电容量为370mAh/g);超化学计量合金电极的循环寿命随x值的增大而降低,但当x<2.2时,经充放电循环500次以后容量保持率仍在80%左右。当化学计量值x等于2.2时,合金电极的综合电化学性能最好。  相似文献   

4.
采用球磨和表面改性方法制备了复合储氢材料Ti0.8Zr0.2V2.7Mn0.5Cr0.7Ni1.75-15wt%La1.5Mg0.5Ni6.7Al0.3。研究和分析表明,钒基Ti0.8Zr0.2V2.7Mn0.5Cr0.7Ni1.7铸态合金由bcc结构固溶体相和六方晶系C14型Laves相构成三维网状组织,球磨改性后钒基合金与La1.5Mg0.5Ni6.7Al0.3之间并未发生合金化反应。电化学性能研究表明,经球磨改性后复合材料Ti0.8Zr0.2V2.7Mn0.5Cr0.7Ni1.75-15wt%La1.5Mg0.5Ni6.7Al0.3能明显增加合金的电极放电容量。铸态钒基合金和球磨复合材料均具有良好的电化学循环稳定性,其中球磨1h后电极最大放电容量为300.1mA/g,经100次循环后的电化学容量保持率为97.2%,球磨5h后试样的循环稳定性高达99%。  相似文献   

5.
采用磁悬浮感应熔炼及退火处理的方法,制备La1.9Ti0.1MgNi9合金。对合金样品的XRD、PCT和电化学测试表明,所有样品均由多相组成,LaNi5相为主相。当退火温度达到1173 K时,合金中LaMg2Ni9相消失,Ti2Ni相出现。退火处理能提高合金的晶化程度、降低吸放氢平台压。退火1073 K合金的有效吸氢量较高,在303 K时达到1.25% (质量分数)。La1.9Ti0.1MgNi9合金退火后,放电容量、循环稳定性以及高倍率放电性能得到极大改善,以1173 K退火合金电化学性能较好,其最大放电容量为377 mAh/g,1100 mA/g电流密度下的高倍率放电性能为0.839,经112次充放电循环后放电容量保持率为60%。  相似文献   

6.
采用真空电弧熔炼及热处理的方法制备La0.7Y0.3Ni3.4-x MnxAl0.1(x=0~0.5)合金,通过XRD、SEM、EDS和电化学测试等方法,系统地研究了Mn替代Ni对合金微观组织、储氢和电化学性能的影响规律。结果表明,退火合金微观组织由主相Ce2Ni7型相和杂相PuNi3型、CeNi3型及Ce5Co19型相组成,Ce2Ni7型主相的丰度随Mn含量增加呈先增大后减小变化规律。当x=0.2时,主相的丰度达到最大值89.03%。增加Mn的含量有助于缓解合金的氢致非晶化倾向。随着Mn含量的增加,合金电极的放电容量逐渐升高,而充放电循环稳定性却逐渐降低,合金电极的最大放电容量和最佳循环稳定性分别为308.6mAh/g与95.09%。合金电极的反应动力学分析结果表明,氢原子在合金体相中的扩散为合金电极高倍率放电性能的动力学控制步骤。  相似文献   

7.
快速凝固Ti-Zr-Ni合金的电化学贮氢性能   总被引:2,自引:0,他引:2  
采用铜辊快速凝固方法制备了Ti45Zr30Ni25和Ti50Zr25Ni25合金,并对合金作为镍-氢二次电池负极的动力学和电化学性能进行了研究.结果表明,Ti45Zr30Ni25为非晶相合金,Ti50Zr25Ni25合金由准晶相和非晶相组成.两合金电极的最大放电容量分别为129和132mAh/g.在240mA/g电流密度下,高倍率放电性能(HRD)分别为62.7%和63.3%.合金电极的交换电流密度分别为205.1和375.6mA/g,氢在合金中的扩散系数分别为5.4×10-11和5.8×10-11cm2·S-1.  相似文献   

8.
热处理对低Co贮氢合金Ml(NiCoMnAlFe)_5电化学性能的影响   总被引:10,自引:4,他引:6  
系统研究了热处理对低Co贮氢电极合金Ml(NiCoMnAlFe) 5 电化学性能的影响。结果表明 ,铸态合金的放电容量为 2 97mA·h/g ,经 2 68次充放电循环后的容量保持率为 68% ;经热处理后 ,合金的放电容量提高至30 2mA·h/g ,2 68次充放电循环后的容量保持率提高至 80 % ,热处理提高了合金的放电容量和循环稳定性 ;同时发现热处理会导致合金高倍率放电特性的恶化。XRD测试表明 ,热处理降低了晶格应力与晶格缺陷 ,改善了合金的成分均匀性 ,从而提高了合金的放电容量和循环稳定性。  相似文献   

9.
La0.7Mg0.3Ni2.8Co0.5贮氢电极合金经过适当热处理后(1123K),最大放电容量、循环稳定性、高倍率放电性能(HRD)、交换电流密度(I0)以及极限电流密度(IL)都有明显改善,铸态合金电极的最大放电容量为392mAh/g,放电电流密度,Id=2000mA/g时,HRD2000=74.0%,I0=266.7mA/g,IL=3425.5mA/g;经1123K保温8h退火的合金电极的最大放电容量提高到414mAh/g,HRD2000=76.2%,I0=407.9mA/g,IL=3753.6mA/g。X射线衍射(XRD)分析表明,衍射峰宽度随着退火温度的升高而变窄,其原因是合金经退火处理相结构的变化和成分的均匀化。  相似文献   

10.
Hydrogen Storage Properties of Co-free La-Mg-Ni-Based Alloys   总被引:2,自引:0,他引:2  
在Ar气保护下采用磁悬浮感应熔炼方法,制备无CoLa1.8Ti0.2MgNi9-xAlx(x=0,0.1,0.2,0.3,0.4)合金,系统研究Al取代Ni对合金的结构及贮氢性能的影响。所有合金均包含LaMg2Ni9相,当Al含量x≥0.1,La(Ni,Al)5相取代LaNi5相、LaNi3相消失、LaNi2相出现。测试合金的焓变值与LaNi5合金(–30.6kJ/molH2)相近。Al取代Ni不仅提高合金电极的放电容量,而且改善循环稳定性及电化学动力学性能。La1.8Ti0.2MgNi8.7Al0.3合金贮氢性能较好,30℃下有效吸氢质量分数为1.32%;最大放电容量达到340mAh/g;1400mA/g放电电流密度下高倍率放电性能HRD1400高达79.8%;经100次充放电循环放电容量保持率为60%。  相似文献   

11.
研究333 K时Ti0.17Zr0.08V0.35Cr0.1Ni0.3 合金的循环稳定性和高温倍率放电性能。333 K时,当放电电流密度为60 mA/g时,Ti0.17Zr0.08V0.35Cr0.1Ni0.3合金第1次放电容量为450 mAh/g。随着充放电循环的进行,放电容量迅速降低。当放电电流密度为2400 mA/g,截止电压为0.6 V时,Ti0.17Zr0.08V0.35Cr0.1Ni0.3合金的放电容量仍达到160 mAh/g。并详细探讨影响以上合金电化学性能的因素  相似文献   

12.
磁热处理对La—Mg—Ni-Co合金微结构与电化学性能的影响   总被引:1,自引:0,他引:1  
考察La0.67Mg0.33Ni2.5Co0.5合金分别在铸态、热处理及磁热处理3种状态下的微结构及其电化学性能.通过XRD衍射及SEM分析贮氢合金的物相组成和电极合金循环后的形貌,研究Co部分替代Ni以及有无外加磁场下热处理对合金微结构与电化学性能的作用规律.结果表明:经Co部分取代的La-Mg-Ni铸态合金经过50次循环后,放电容量保持率从64.46%提高到74.80%;经磁热处理后,La0.67Mg0.33Ni2.5Co0.5合金的最大放电容量为324.80mA·h/g,较常规热处理合金的容量提高了10.59%,放电容量保持率为83.07%,其放电平台更为宽广且平坦:磁热处理的引入进一步降低贮氢合金电极的极化电阻,改善合金电极动力学性能.  相似文献   

13.
采用真空电弧熔炼及热处理的方法制备La0.7Y0.3Ni3.4-ХMnХAl0.1(Х=0~0.5)合金,通过XRD、SEM、EDS和电化学测试等方法,系统地研究了Mn替代Ni对合金微观组织、储氢和电化学性能的影响规律。结果表明,退火合金微观组织由主相Ce2Ni7型相和杂相PuNi3型、CeNi3型及Ce5Co19型相组成,Ce2Ni7型主相的丰度随Mn含量增加呈先增大后减小变化规律。当Х=0.2时,主相的丰度达到最大值89.03%。增加Mn的含量有助于缓解合金的氢致非晶化倾向。随着Mn含量的增加,合金电极的放电容量逐渐升高,而充放电循环稳定性却逐渐降低,合金电极的最大放电容量和最佳循环稳定性分别为308.6mAh/g与95.09%。合金电极的反应动力学分析结果表明,氢原子在合金体相中的扩散为合金电极高倍率放电性能的动力学控制步骤。  相似文献   

14.
为了改善钛钒基固溶体合金的电催化活性和动力学性能,采用两步电弧熔炼法制备储氢复合合金Ti0.10Zr0.15V0.35Cr0.10Ni0.30–10%LaNi3,利用X-射线衍射、场发射扫描电镜-能谱、电化学阻抗谱和恒流充放电测试技术系统研究该储氢复合合金电极的电化学性能与协同效应。结果表明:该复合合金的主相是BCC结构的钒基固溶体相和六方结构的C14Laves相,在复合过程中生成了第二相;复合合金电极的综合电化学性能较母体合金有显著改善;复合合金电极的活化周期为5周,最大放电容量为362.5mA·h/g,在233K时放电能力为65.84%;在活化、复合、任意循环及高、低温和高倍率放电过程中,该储氢复合合金电极的放电容量均存在协同效应;该复合合金电极的电荷转移电阻和交换电流密度均存在协同效应。  相似文献   

15.
用两步熔炼法制备TiV1.1Mn0.9Ni0.5-ZrCr2复合电极合金。XRD、EDS、ICP及EIS等分析结果表明:复合合金具有与母体合金相同的双相结构,但是两相的特征参数以及复合合金电极的热力学特性均发生了一系列变化;组分合金在复合过程中产生明显的协同效应;复合合金电极的最大放电容量达到457.2 mAh/g;循环稳定性、荷电保持率和高倍率放电等动力学性能均得到显著改善;1000 mA/g放电电流密度时,复合合金电极的高倍率放电性能是由电极/电解质界面上的电化学反应和合金体内氢的扩散混合控制  相似文献   

16.
研究了(TiZr0.35)(V0.5Mn1.1-xCr0.4Nix)(x=0.7~1.0)贮氢合金的相结构及电化学性能.XRD及SEM分析表明:合金主要由具有六方结构的C14型Laves相和TiNi基第二相组成,随着Ni含量x的增加,合金晶胞体积逐渐变小,C14型Laves主相含量逐渐增多.电化学测试结果表明:随着Ni含量x的增加,合金的高倍率放电性能及循环稳定性均得到显著改善;合金的贮氢容量随着Ni替代量的增加而先增后减,当x=0.9时,达到最大电化学容量404mAh/g.  相似文献   

17.
研究了Zr0.8Ti0.2(Ni0.6Mn0.2V0.2Cr0.05)x(x=1.8~2.4)贮氢合金中化学计量x对晶体结构和电化学性能的影响.结果表明随着x值的增大,合金中C14相含量逐渐减少,C15相含量逐渐增加,C14和C15相的晶格常数均线性减小;随着x值的增大,合金电极的活化性能提高,高倍率放电性能和放电容量均先升高,至x=2.2时达到最大值(最大放电容量为370 mAh/g);超化学计量合金电极的循环寿命随x值的增大而降低,但当x<2.2时,经充放电循环500次以后容量保持率仍在80%左右.当化学计量值x等于2.2时,合金电极的综合电化学性能最好.  相似文献   

18.
两步电弧熔炼法制备Ti0.10Zr0.15V0.35Cr0.10Ni0.30+1%La0.85Mg0.25Ni4.5Co0.35Al0.15复合储氢合金,XRD、SEM、EDS分析结果表明,复合储氢合金的主相是体心立方结构的钒基固溶体相和六方结构的C14Laves相。电化学研究表明:复合过程中存在明显的协同效应;与母体合金电极相比,复合合金电极的P-C-T特性、活化性能、最大放电容量、循环稳定性、低温放电能力和高倍率放电性能均有了显著改善;复合合金电极的电荷转移电阻较小,交换电流密度和氢的扩散系数较大,这些改善可能与第二相的形成有关。  相似文献   

19.
研究了超化学计量比对钛基贮氢合金相结构及电化学性能的影响。XRD及EDS分析表明,超化学计量比贮氢合金(Ti0.8Zr0.2)(V0.533Mn0.107Cr0.16Ni0.2)x(x=2,3,4,5,6)均主要由六方结构的C14型Laves相和体心立方结构的钒基固溶体相构成。随着x值的增大,两相的晶胞参数及晶胞体积均减小。电化学性能测试表明,当x的值在2-5范围内时,随着x值的增大,合金的最大放电容量、放电电位、高倍率放电性能(HRD)、循环稳定性、交换电流密度I0以及极限电流密度IL均提高。但继续增大x值后,除放电电位、高倍率放电性能和循环稳定性继续有所提高外,最大放电容量、交换电流密度I0以及极限电流密度IL均减小。此外,随着化学计量比的增大,合金电极的活化渐趋困难。  相似文献   

20.
采用机械球磨法制备非晶态的Ti_(2-x)Mg_xNi(x=0-0.3)合金粉末。通过充放电测试、线性极化和电位阶跃等方法研究非平衡态Ti_(2-x)Mg_xNi(x=0-0.3)合金热处理前后的电化学储氢性能。结果表明:热处理后Ti_(2-x)Mg_xNi合金的最大放电容量高达275.3 mA·h/g,比非晶态的Ti_(2-x)Mg_xNi合金的放电容量高100 mA·h/g。Ti_(1.9)Mg_(0.1)Ni合金的循环稳定性最好,经30次循环后的容量保持在210 mA·h/g。经过热处理的Ti_(1.9)Mg_(0.1)Ni合金的交换电流密度从101.1 mA/g增大到203.3 mA/g,氢扩散系数从3.20×10~(-11)cm~2/s增大到2.70×10~(-10)cm~2/s,表明热处理明显促进了电极的电子转移和氢扩散过程,从而提高了Ti_(2-x)Mg_xNi合金的电化学储氢性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号