共查询到18条相似文献,搜索用时 62 毫秒
1.
为了研究油膜厚度对静压支承的影响,以闭式液体静压导轨为研究对象,确定了导轨系统的初始参数;基于力平衡方程及流量方程,建立了功率损失、静态性能、动态性能的数学模型;将总功率损失、承载能力和静刚度、固有频率、调整时间和动刚度等参数作为导轨的性能指标,利用MATLAB软件定量分析了油膜厚度对导轨性能的影响。研究结果表明:增大油膜厚度,则液体静压导轨的总功率损失增大,调整时间变长,承载能力不变,静刚度、固有频率及动刚度减小。因此,减小油膜厚度,可降低导轨总功率损失,提高静态性能和动态性能。研究结果为工程实际中闭式液体静压导轨静压油膜的设计提供了理论依据。 相似文献
2.
3.
为了提高液体静压导轨的性能,采用5种牌号润滑油,定量分析了润滑油黏度对导轨性能的影响。首先,根据现场工况确定了导轨系统的初始设计参数,计算了不同温度、不同牌号润滑油的动力黏度;接着,基于导轨的力平衡方程及流量方程,建立了导轨系统总功率损失、静态性能、动态性能的线性化数学模型,以总功率损失、承载能力、静刚度、固有频率、调整时间和动刚度作为导轨系统的性能指标;最后,利用MATLAB软件分析了润滑油黏度对导轨性能的影响。研究表明:增大润滑油牌号(VG22→VG100),降低工作温度(60℃→10℃),润滑油黏度增大,导轨系统总功率损失由507.58W (VG22,60℃)降低至33.93W (VG100,10℃),承载能力、静刚度、固有频率恒定不变,调整时间由29.84μs (VG22,60℃)缩短至0.46 μs (VG100,10℃),动刚度由173kN/μm (VG22,60℃)增大至10 369kN/μm (VG100,10℃)。因此,增大润滑油的动力黏度,能降低导轨系统的功率损失,静态性能不受其影响,动态性能大大提高。 相似文献
4.
5.
6.
为了提高精度、减少功率消耗、消除爬行现象 ,很多重型机床都采用了液体静压导轨。液体静压导轨的静摩擦系数很小 ,在运动方向几乎没有任何阻尼 ,因此对进给传动元件提出了很高要求。现代机床对进给传动元件要求无间隙、磨损小、刚度好、抗阻尼性能好、功率小、传动效率高[1] 。液体静压蜗杆蜗母条传动副能够满足这些要求 ,近年来在数控机床上得到了广泛的应用。1液体静压蜗杆蜗母条的工作原理液体静压蜗杆蜗母条的工作原理与静压丝杠螺母基本相同。不同的是 ,静压丝杠螺母不存在配油问题 ,而蜗母条相当于螺母的一部分 ,因此存在配油问题。… 相似文献
7.
燕尾静压导轨的工作性能与其选取的初始油膜厚度密切相关。通过对由PM流量控制器调控的燕尾静压导轨进行研究,分析并推导出初始油膜厚度与静压导轨静动性能之间的函数关系。结果表明:增大导轨底层大面和燕尾面初始油膜厚度,都可以提高导轨的承载能力,但提升幅度不大;降低导轨底层大面和燕尾面初始油膜厚度,均会增大低燕尾导轨的静、动态刚度,其中导轨底层大面初始油膜厚度的变化对静刚度影响更大,燕尾面初始油膜厚度的变化则对动刚度影响更大,在实际中应该根据所设计导轨工况选取合适的初始油膜厚度。 相似文献
8.
9.
10.
为研究液体圆柱静压导轨的初始参数对导轨性能的影响,以内反馈节流形式的液体圆柱静压导轨为研究对象,列出力平衡方程、流量连续性方程,经推导和线性化处理得到液体圆柱静压导轨的线性化微分方程组,利用Laplace变换得到传递函数,推导出液体圆柱静压导轨的数学模型。从时域、频域内分别分析初始油膜厚度、油液黏度、供油压力对导轨性能的影响。研究表明在低频段减小初始油膜厚度、增大油液黏度和供油压力,在高频段增大初始油膜厚度,可增大导轨动态刚度,提高支承的稳定性,减小导轨间隙相对稳态位移值。在高频段,油液黏度、供油压力对液体圆柱静压导轨的动态性能影响不大。研究工作对液体圆柱静压导轨的设计提供参考价值。 相似文献
11.
液体静压主轴油膜滑移现象的分析及试验研究 总被引:1,自引:0,他引:1
针对液体静压主轴运动过程中动态特性问题,研究微尺度下油膜滑移对轴承承载力,刚度及动态刚度的影响。把微尺度下发生的速度滑移引入到油膜性能方程中,结合液体静压主轴系统平衡方程推导出了主轴系统承载力、刚度及动态刚度表达式,研究了油膜初期主轴静动态性能及油膜动刚度特性。从仿真结果中得到油膜滑移的发生使得承载力及刚度增大,最大刚度对应油膜厚度减小。最后刚度检测试验间接得出了实际主轴系统油膜流动过程中,存在油膜微滑移现象。本项研究为液体静压主轴微尺度下油膜滑移现象及性能的研究探索了一条新途径。 相似文献
12.
在剪切力和压缩力共同作用下,液体静压轴承黏性油膜的液阻和流速会发生变化,导致油膜的散热能力不稳定,而增加油膜流动阻力,减小流动速度可以有效提高油膜的散热能力。为增加流体的扰动进而增强换热,在静压轴承工作面上加工不同的微结构(矩形、三角形、椭圆形),通过数值仿真方法研究微结构在不同跨度、不同深度、不同间距下对轴承工作面油膜流动速度的影响,得到黏性油膜增阻减速的有效范围。结果表明:综合微结构深度、跨度、间距变化对油膜液阻的影响,矩形微结构增阻效果最明显,椭圆形微结构次之,三角形微结构最差;当微结构间距单一变化时,只有矩形微结构可起到降低流场平均速度的作用。因此,矩形微结构可起到增阻减速的作用,且增阻减速的最佳间距范围为0.01~0.04 mm。 相似文献
13.
节流器是液体静压主轴的核心元件,其节流特性对液体静压主轴的刚度和回转精度具有直接影响。针对现有节流器在主轴工作时节流特性不可控的不足,提出一款预压预调型可控节流器。在分析可控节流器工作原理和节流特性基础上,根据流体润滑理论,建立基于可控节流器的液体静压轴承承载性能的理论模型,研究可控节流器供油压力、弹簧刚度和控制油腔压力等参数对液体静压轴承承载性能的影响规律,并与固定节流液体静压轴承的承载性能进行对比。研究发现,在其他结构参数及工作参数一定的条件下,可控节流器能够显著地提高液体静压轴承的油膜刚度;在不同偏心率条件下,可控节流液体静压轴承的最佳油膜刚度对应的节流参数不同。在开发的液体静压电主轴试验台上进行了试验研究,通过对油腔压力和油膜刚度的理论计算值与试验测量值的对比,证实了可控节流方案的有效性。 相似文献
14.
针对由滑动轴承油膜厚度不同所引起的轴瓦受力差异和船舶轴系振动问题,以某型散货船作为研究对象,运用有限元法对不同油膜厚度时的轴瓦应力分布进行仿真,并对推进轴系振动进行模态分析,获得轴系振动的固有频率和振型,并对油膜厚度不同引起的轴瓦受力和轴系振动的差异进行对比分析。结果表明:轴承间隙过小,油膜发生变形,不能形成油楔,油膜的散热作用就会降低,导致轴系发热,磨损增加;而间隙过大,润滑油的动力特性就会减弱,导致轴系运行不稳定,振动更加剧烈,不利于形成油楔。因此,随着轴系的磨损,轴承间隙会逐渐增大,当间隙超过一定值时,振动幅值将会过大,从而危害轴系的安全运行。 相似文献
15.
16.
分析了液体静压推力轴承供油孔区域惯性效应对其承载力的影响,供油孔区域惯性效应主要影响浅油腔液体静压推力轴承的承载力,当油膜厚度比大于5时,考虑和不考虑供油孔区域惯性效应的承载力之间的相对误差小于1%.对于浅油腔液体静压推力轴承,供油孔区域的惯性效应不容忽视,轴承承载力在考虑和不考虑供油孔区域惯性效应时的相对误差受供油孔... 相似文献
17.
以力载荷下的液体静压导轨为对象,建立了闭式导轨、开式导轨的主动振动模型,推导了系统的油膜刚度、阻尼系数的计算公式,计算了简谐、非简谐周期载荷下导轨系统的固有频率、幅值及相角,从理论上分析了设计参数对导轨系统的固有频率、幅值的影响。以闭式液体静压导轨为例,对导轨系统的固有频率、幅值放大系数进行了分析,结果表明:调整油腔压力、油膜厚度均可改变导轨系统的固有频率;力载荷作用下导轨的幅值放大系数基本上不受油腔压力的影响,而随油膜厚度的增大、油液温度的升高、载荷频率的降低而增大。详细地分析了力载荷下液体静压导轨的主动振动,为工程实际中减少导轨振动、提高加工精度提供了参考依据。 相似文献