共查询到19条相似文献,搜索用时 265 毫秒
1.
一类具有精英学习能力的增强型人工免疫网络优化算法 总被引:3,自引:2,他引:1
提出了一种用于求解优化问题的具有精英学习能力的增强型人工免疫网络(Enhanced aiNet–EL)算法. 该算法集成了亲和力学习和精英学习, 改进了免疫进化的克隆、变异和抑制算子. 通过对两个经典函数的优化实验,结果表明本文提出的Enhanced aiNet–EL算法在最优解质量和收敛速度上都要优于传统aiNet和EaiNet算法. 作为应用实例, 工业PID控制器被用于测试算法的优化性能. 实验所得的阶跃响应表明, 使用Enhanced aiNet-EL得到的系统性能要优于使用其他4种方法得到的系统 相似文献
2.
3.
4.
人工免疫粒子群算法在系统可靠性优化中的应用 总被引:3,自引:0,他引:3
为了优化舰载装备系统在其设计初期的可靠性,根据模糊优选理论,建立了基于正负理想方案的可靠性分配的多指标模糊优化模型.针对基本粒子群(PSO)算法易陷入早熟状态以及群体缺乏多样性等不足之处,将人工免疫系统(AIS)原理与改进的粒子群算法有机结合,并对粒子的飞行速度进行控制,提出一种基于人工免疫的粒子群算法(AI-PSO).将该算法应用于系统可靠性优化求解中,仿真试验结果表明,相比其他算法而言,该算法具有较强的全局搜索能力,其优化结果更为合理. 相似文献
5.
为了增强数值优化算法的高效性和鲁棒性,提出一种基于自适应学习的集成算法 (self-adaptive-learning-based ensemble algorithm, SALBEA).在SALBEA中,采用贪婪繁殖算子、进化搜索策略学习算子、X进化算子、种群多样性维持算子改进算法进化结构.此外,SALBEA通过引入概率选择模型和自适应学习机制集成了4种有效的进化搜索策略.首先,为了评估所提算法的性能,采用26个测试函数进行算法对比测试,实验结果表明SALBEA比同类算法具有更好的高效性和鲁棒性.最终,将SALBEA用于求解矩阵特征值这一数值计算问题,结果表明该算法求解精度较高,具有较好的应用前景. 相似文献
6.
基于全局粒子群的协作型人工免疫网络优化算法 总被引:1,自引:0,他引:1
提出协作型人工免疫网络模型(CoAIN),实现基于全局粒子群的协作型人工免疫网络优化算法(gpsoCoAIN).算法中新增的全局粒子群协作算子使其人工免疫网络中的记忆细胞具有粒子的特性,能够通过个体间协作共享寻优经验.此外,改进的可变步长的克隆选择过程更适应高精度搜索.函数优化实验表明,gpso-CoAIN算法在寻优能力及执行速度方面都优于其它算法.对gpso-CoAIN人工免疫网络的动态特征分析表明,该算法的记忆细胞多样性良好. 相似文献
7.
增强型微粒群优化算法及其在软测量中的应用 总被引:14,自引:0,他引:14
对微粒群优化算法(PSO)进行分析,提出一种增强型微粒群优化算法(EPSO),用EPSO和PSO对几种常用函数的优化问题进行测试比较,结果表明EPSO比PSO更容易找到全局最优解,优化效率和优化性能明显提高,将EPSO用于催化裂化装置主分馏塔粗汽油干点软测量,建立了基于EPSO算法的粗汽油干点神经网络软测量模型,研究结果表明,基于EPSONN的软测量模型比基于BPNN的软测量模型具有更高的精度和更好的性能。 相似文献
8.
9.
为循环利用铜资源、降低成本、减少烧损,且满足不同牌号旧料可代用性等实际配料要求,建立了多目标实时配料模型,并进行模型转换,设计了精铜板带加工配料优化的人工免疫算法.重点研究了抗体表示、抗体与抗原及抗体与抗体亲和力的计算、初始种群产生等关键环节,给出了免疫算法的具体实现步骤.实验结果表明,与传统遗传算法相比,人工免疫算法可获得具有代表性的多个满意解,具有较强的多样性,便于在实际投料操作中选择. 相似文献
10.
基于自主学习和精英群的多子群粒子群算法 总被引:1,自引:0,他引:1
为了提高动态多子群粒子群算法中粒子学习的自主性,提出一种基于自主学习和精英群的粒子群算法.该算法借鉴教育心理学自主学习的理念,用基础群中粒子自主选择学习对象的操作代替子群的重组操作,并通过精英群局部搜索的配合来达到寻优的目的.将所提出的算法应用于6个测试函数,并与动态多子群PSO等算法进行了比较,比较结果表明,新算法在提高收敛速度、精度和寻优时间等方面具有良好的性能。 相似文献
11.
为了在探索和利用之间取得平衡,提高算法的效率,借鉴粒子群算法机理,本文提出一种新的免疫网络优化算法,算法利用了抗体集中的优秀个体以及父抗体在克隆变异过程中的有利信息来自适应地指导变异方向。在一些经典的测试函数上对新算法进行测试,实验结果表明,该算法具有很好的全局和局部搜索能力,有较快的最优解搜索速度和较强的多峰值搜索能力。 相似文献
12.
一种反演问题求解的免疫克隆粒子群优化算法 总被引:1,自引:0,他引:1
为了克服标准粒子群优化(PSO)算法易陷入局部最优以及进化后期收敛速度慢等缺陷,分析了标准PSO算法早熟收敛的原因,提出了基于混合变异机制的免疫克隆粒子群优化(ICPSO)算法并将其应用到波阻抗反演问题中.克隆选择算子能够在局部极值点接近全局最优点时有效增强最优粒子跳出局部解的能力;引入混沌映射Tent序列加速最优粒子的变异学习,在局部极值点与全局最优点距离较远时扩大遍历范围,避免陷入局部极值.通过理论模型试算表明,ICPSO算法在进行波阻抗反演时不仅收敛速度快,而且具有较高的反演精度和抗噪性能. 相似文献
13.
14.
基于人工免疫模型的网络入侵检测系统 总被引:7,自引:1,他引:7
首先介绍了入侵检测系统的两种体系结构,并分析了它们存在的问题。随后给出一种基于人工免疫模型的入侵检测方法。文章详细介绍了人工免疫模型的工作原理和结构框架,并且对它的系统特性进行了分析。 相似文献
15.
本文提出了一种具有冯诺依曼社会结构的新型人工蜂群算法(VNABC)。本文采用四个测试函数验证VNABC算法性能,并将其应用于求解射频识别系统中的读写器网络覆盖和防冲突问题。试验结果表明,与基本人工蜂群算法和粒子群优化算法比较,VNABC算法求解复杂优化问题收敛速度较快、求解精度更高,从而为应用智能方法求解RFID系统优化问题提供了有效的可行方案。 相似文献
16.
In this paper, we propose an algorithm based on the clonal selection principle to solve multiobjective optimization problems (either constrained or unconstrained). The proposed approach uses Pareto dominance and feasibility to identify solutions that deserve to be cloned, and uses two types of mutation: uniform mutation is applied to the clones produced and non-uniform mutation is applied to the not so good antibodies (which are represented by binary strings that encode the decision variables of the problem to be solved). We also use a secondary (or external) population that stores the nondominated solutions found along the search process. Such secondary population constitutes the elitist mechanism of our approach and it allows it to move towards the true Pareto front of a problem over time. Our approach is compared with three other algorithms that are representative of the state-of-the-art in evolutionary multiobjective optimization. For our comparative study, three metrics are adopted and graphical comparisons with respect to the true Pareto front of each problem are also included. Results indicate that the proposed approach is a viable alternative to solve multiobjective optimization problems. 相似文献
17.
基于多目标粒子群算法的PID控制器设计 总被引:2,自引:0,他引:2
随着对控制系统的要求越来越高,进行比例积分微分(Proortion Integration Differentiation,PID)控制器的设计的时候应该同时考虑到系统时域指标和频域指标,常规的PID整定方法往往很难实现.为解决上述问题,采用多目标粒子群算法进行PID控制器参数的设计,算法将系统的超调量、上升时间和稳定时间作为目标函数,频域指标作为约束条件.算法的运算结果为一组Pareto最优解,运行者可以根据当前对系统的要求从中选取合适的解.通过与常规PID整定方法和采用单目标粒子群算法的方法进行比较,证明了改进方法的有效性. 相似文献
18.
基于改进的人工免疫算法的函数优化 总被引:4,自引:1,他引:4
为了提高算法的运行速度和收敛速度,确保算法收敛到全局最优,以及提高群体的多样性和整体品质,提出了基于百分比表示的抗体相似度、期望繁殖率以及克隆选择概率的定义方法和计算公式,并结合精英策略(elitism strategy)提出了一种改进的人工免疫算法,(Artificial Immune Algorithm with Elitism,AIAE).用AIAE对测试函数F15进行仿真实验,结果表明所提算法能以较快的速度搜索到函数的全局最优解,并且解的波动性很小、解的质量很高.因此可将该算法用来优化由本项目设计组设计的智能人工腿中的控制器. 相似文献