首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
将含镍金属有机框架材料(Ni-MOF)与焦磷酸哌嗪(PPAP)复配后添加到环氧树脂(EP)中,通过极限氧指数(LOI)、垂直燃烧(UL 94)及锥形量热(CONE)测试研究了材料的阻燃性能及烟释放行为。结果表明,添加6%(质量分数,下同)的PPAP时,材料的LOI值为27.9%,垂直燃烧测试通过了UL 94 V-0级;当PPAP与Ni-MOF以质量比99∶1混合,总添加量为5%时,材料的LOI值达到29.3%并通过了UL 94 V-0级;极少量Ni-MOF的加入,有效提高了材料的阻燃效率。CONE测试表明,在相同阻燃剂添加量下,EP/PPAP/Ni-MOF材料的热释放速率、总热释放量、烟释放速率及总烟释放量,与EP/PPAP材料相比均得到了明显降低;Ni-MOF的引入,降低了材料的燃烧强度,减少了烟气的释放;Ni离子与PPAP受热分解形成的磷酸及多聚磷酸发生交联,将更多的磷留在了凝聚相中,促进了材料形成更加丰富、强度更高的炭层,有效抑制EP燃烧过程中热量和烟气的释放,从而提高了EP材料的火安全性能。  相似文献   

2.
黎瑶  沈文涛  许苗军 《塑料》2023,(1):11-14
以焦磷酸哌嗪(PPAP)为阻燃剂、钠基蒙脱土(MMT)为协效剂,制备了阻燃环氧树脂(EP)材料,并对材料的阻燃、热降解及成炭性能进行了分析。当单独添加6%PPAP时,材料在垂直燃烧测试时达到了UL 94 V-0级。以MMT为协效剂,当PPAP与MMT的质量比为96:4时,材料的协同阻燃作用达到最佳,当阻燃剂总添加量为5%时,材料达到了UL 94 V-0级,极限氧指数为28.5%。锥形量热测试表明,与EP/PPAP体系相比,MMT的加入显著降低了材料的热量并且减少了烟气的释放,总烟释放降低了13.6%,同时促进了材料成炭,残炭量提高了55.7%。炭层的强度得到了提高,更多的可燃物滞留在凝聚相中,提高了材料的阻燃效率及火安全性能。  相似文献   

3.
采用极限氧指数(LOI)、垂直燃烧(UL94)、热失重分析(TG)和微型燃烧量热仪(MCC)研究焦磷酸哌嗪(PAPP)、聚磷酸三聚氰胺(MPP)和氧化锌(ZnO)复配阻燃剂对嵌段共聚聚丙烯阻燃性能、成炭性能和燃烧性能的影响,通过扫描电子显微镜(SEM)观察材料燃烧后形成炭层的表观形貌。结果表明,PAPP具有较好的成炭性,PAPP与MPP按质量比为2∶1复配,加入少量ZnO作协效剂,复配阻燃剂添加量在30%,阻燃复合材料的LOI提高至42. 4%,通过UL94 V-0级(1. 6 mm)。阻燃剂的加入,在材料表面形成连续致密的炭层,提高材料在高温时的热稳定性,600℃的残炭率增加近五倍,抑制材料的降解,显著降低燃烧过程中释放的热量,减少火灾危险性。  相似文献   

4.
本文以三氯氧磷、对羟基苯甲醛及DOPO为原料成功合成了一种新型含磷阻燃剂DOPO-TPPO,采用FTIR测试对其结构进行了表征。通过热重分析测试(TGA)研究了产物的热稳定性、热降解行为及成炭性能,表明该阻燃剂具有较好的热稳定性和成炭性能。将阻燃剂DOPO-TPPO添加到环氧树脂中,以二氨基二苯硫砜(DDS)为固化剂制备阻燃环氧树脂固化物,通过极限氧指数(LOI)和垂直燃烧(UL-94)测试研究了环氧树脂固化物的阻燃性能。结果表明:合成产物的起始热分解温度为195℃,在700℃时的残炭量为29%,当阻燃剂添加量(质量分数)为11.0%时,环氧树脂固化物能通过垂直燃烧UL-94 V-0级,氧指数高达32.0%,表明该物质对环氧树脂材料具有优异的阻燃性能。  相似文献   

5.
将次磷酸铝(AHP)和三聚氰胺氰尿酸盐(MCA)复配后添加到热塑性聚氨酯(TPU)中制备阻燃TPU材料,通过氧指数(OI)和垂直燃烧(UL 94)测试研究了材料的阻燃性能,通过热重分析(TGA)技术测定了材料的热稳定性及成炭性能,同时还研究了AHP与MCA不同的质量比对TPU材料性能的影响。结果表明:当AHP与MCA的质量比为1:2,阻燃剂的总添加量为11%时,阻燃TPU材料能通过垂直燃烧UL 94V-0级,OI达到了25.2%。TGA测试结果表明:阻燃剂AHP/MCA的加入对TPU材料的起始热分解温度没有影响,但能提高材料在高温时的热稳定性,同时提高材料的成炭性能。增加的炭层能有效地阻止氧气和热量进入到材料内部,抑制内部可燃性气体的逸出,同时AHP与MCA能释放出难燃气体,稀释氧气及可燃性气体的浓度,从而提高了材料的阻燃性能。  相似文献   

6.
《塑料科技》2015,(8):38-42
以芳磺酸盐(KTS)与双酚A双(二苯基磷酸酯)(BDP)作为复配体系,制备了阻燃聚碳酸酯(PC)复合材料。通过极限氧指数(LOI)、垂直燃烧、热失重分析(TGA)、力学性能测试实验研究了复配阻燃剂对PC阻燃性能、热稳定性和力学性能的影响。结果表明:当KTS、BDP用量分别为0.1%和12.5%时,体系的LOI达到最大值37.5%,垂直燃烧等级为UL 94V-0级;KTS与BDP复配使用后,对PC有良好的协同阻燃作用,有利于提高材料的热稳定性,同时提高了阻燃PC复合材料的成炭能力,改善了残炭质量。  相似文献   

7.
通过原位聚合法制备了以环氧树脂(EP)为壁材,三聚氰胺聚磷酸盐(MPP)为芯材的环氧包覆三聚氰胺聚磷酸盐(EPMPP),将其与二乙基次磷酸铝(ADP)复配后制备了阻燃乙烯-醋酸乙烯酯共聚物(EVA)复合材料,并对阻燃材料材料进行了极限氧指数、UL 94垂直燃烧测试以及热失重分析表征。结果表明,当ADP与EPMPP质量比为2:1、添加量为40%(质量分数,下同)时,阻燃复合材料的极限氧指数达到最高值31%,UL 94垂直燃烧测试达V-0级;EVA/ADP/EPMPP阻燃复合材料的初始分解温度为303℃,850℃时残炭量为18%,较EVA/ADP/MPP阻燃复合材料有较大幅度的提高。  相似文献   

8.
聚磷酸铵(APP)单独应用于阻燃环氧树脂(EP)时,阻燃效率较低,往往需要较大的添加量才能达到环氧树脂复合材料的阻燃要求。通过制备层状双金属氢氧化物Zn-Fe-LDH,然后将其与聚磷酸铵复配引入环氧树脂中,成功制备出阻燃型复合材料(Zn-Fe-LDH+APP)/EP。极限氧指数(LOI)及垂直燃烧(UL94)测试表明,当Zn-Fe-LDH和APP的总添加量为5%时,(Zn-Fe-LDH+APP)/EP的LOI为28.6%,UL94可达V-1级,锥形量热结果表明,相比较纯APP,Zn-Fe-LDH和APP体系可明显降低环氧树脂的热释放和烟释放。  相似文献   

9.
以甲基膦酸和三聚氰胺为原料,合成了聚甲基膦酸三聚氰胺(MMP),通过傅里叶红外测试对其结构进行了表征。结果表明,阻燃剂的起始热分解温度为228 ℃,800 ℃残炭率为41.2 %,MMP具有良好的热稳定性和成炭性能;MMP添加到不饱和聚酯(UPR)材料中,当添加量为21 %(质量分数,下同)时,材料在垂直燃烧测试时达到了UL 94 V-0级,极限氧指数为38.5 %,表现出了很好的阻燃效率;MMP的加入促进了UPR的提前降解和成炭,提高了材料在高温时的成炭率,使得材料在燃烧时形成了膨胀致密的炭层,有效抑制了内层材料的降解和燃烧,从而提高了材料的阻燃性能。  相似文献   

10.
通过磷系阻燃剂(FR)阻燃聚碳酸酯/丙烯腈-丁二烯-苯乙烯(PC/ABS)共混物,制备阻燃材料,研究磷系阻燃剂对PC/ABS阻燃复合材料的燃烧行为和热稳定性的影响。通过UL94垂直燃烧测试、极限氧指数(LOI)测试、马弗炉测试等表征方法,对PC/ABS阻燃复合材料的燃烧行为进了系统的研究。结果表明,磷系阻燃添加量为15%时,PC/ABS阻燃复合材料能够达到UL94 V-2级,LOI的值为29.3%,高温时的残炭量由11.2%提高到20.8%。其中FR阻燃剂在高温下可以产生磷酸酯类黏稠难燃物质,能够有效地起到凝聚相阻燃作用,提高了PC/ABS共混物材料的阻燃性能,表现出良好的阻燃效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号