首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对水体富营养化现象,以青霉素菌渣为原料制备生物炭,通过共沉淀法在所制备生物炭上负载铁、锆离子,得到了一种新型除磷吸附剂 Zr Fe-HBC,研究了其对水中磷酸盐的吸附特性及吸附机理。结果表明,Zr FeHBC 具备多层级孔隙结构,铁、锆离子以氧化物形式结合于生物炭之上。Zr Fe-HBC 吸附磷酸盐的过程符合准二级动力学和 Freundlich 模型,为多分子层的化学吸附,在 25 ℃时饱和吸附量为 18.26 mg/g。Zr Fe-HBC 对磷酸盐的吸附量随 p H 降低而增加,适合在酸性条件下对磷酸盐进行吸附处理。共存阴离子可与磷酸盐竞争吸附位点,其中 CO32-对磷酸盐吸附产生严重干扰。选择 1 mol/L Na OH 溶液对吸附后的 Zr Fe-HBC 进行解吸,经过 5 次吸附-脱附循环,Zr Fe-HBC 仍保持 78% 的吸附容量。综合吸附实验与表征结果分析 Zr Fe-HBC 对磷酸盐的吸附机理,结果表明,Zr Fe-HBC 主要通过静电吸附、配体交换和表面沉淀作用对磷酸盐进行吸附。  相似文献   

2.
《广州化工》2021,49(18)
研究以颗粒生物炭(GBC)为原料,制备La@Zr改性颗粒生物炭(La@Zr-GBC),并研究了其动态除磷性能。结果表明,Thomas模型能较好拟合吸附数据,一定程度增加初始磷浓度有助于提高磷吸附量,低流量和酸性环境有利于的磷的吸附,共存离子Cl~-和SO_4~(3-)对磷吸附影响较小,但HCO_3~-抑制磷的吸附。采用1.0 mol/L NaOH为洗脱剂,经5次循环吸附和洗脱后,La@Zr-GBC对磷的吸附量下降了15.2%。  相似文献   

3.
徐清艳 《山东化工》2023,(2):4-7+10
以小麦秸秆为原料,通过浸渍法制备改性生物炭,对其采用XRD、SEM进行表征分析,研究钴改性生物炭对尼泊金乙酯(EP)的吸附性能。讨论了改性生物炭的用量、尼泊金乙酯的初始浓度,反应时间及反应温度对EP溶液的吸附影响。实验结果表明:改性生物炭对EP的吸附主要以化学吸附为主;在一定范围内,改性生物炭对EP的吸附效率随生物炭用量的增加而增加;反应温度对改性生物炭吸附EP的影响较大,在EP浓度为30 mg/L、生物炭添加量为5 g/L、温度为45℃条件下吸附4 h时EP最大去除率为95.5%。  相似文献   

4.
采用解磷菌(PSB)对猪粪生物炭(PMBC)改性制得改性生物炭(PMBC+PSB),探讨了其对水中U(Ⅵ)的去除效果与作用机制。研究结果表明, PMBC改性24 h制得生物炭(PMBC+PSB24)的除U(Ⅵ)效果最佳,改性后生物炭内壁孔洞明显增多,BET结果测定PMBC+PSB24比表面积和总孔体积相较改性前分别增加了88.1%和39.7% 。当温度为30 ℃,pH值为4, U(Ⅵ)初始质量浓度10.00 mg/L,PMBC+PSB24投加量0.20 g/L时,其对水中U(Ⅵ)去除率达99.46%。PMBC+PSB24对水中U(Ⅵ)最大吸附容量达555.19 mg/g,相较未改性的提升24.44%,吸附过程符合Freundlich 等温模型与拟二级动力学模型。SEM、TEM表征结果显示,PMBC+PSB24表面和菌体内部均出现放射状晶体,XRD结果表明该晶体为变钾铀云母[K(UO2)(PO4)·3H2O]。FTIR、XPS结果表明,PMBC+PSB24表面官能团丰度提高,参与吸附的主要为羟基和磷酸基团。改性生物炭主要的除U(Ⅵ) 机理为表面络合和矿化沉淀。经过5次吸附-解吸循环后改性生物炭的吸附量仅下降9.4%,具有良好的再生性能。  相似文献   

5.
研究了组合改性沸石的最佳制备方法,以及不同改性方式和pH对改性沸石除磷效果的影响。通过吸附动力学与吸附等温线探究其吸附机理并使用扫描电镜对改性前后的沸石进行表征。结果表明,最佳的改性方案为2.0 mol/L NaOH溶液和2.0 mol/L聚合氯化铝(PAC)溶液组合改性。当废水pH=7时该改性沸石除磷效果最佳,此时除磷率为98.74%,其吸附符合准二级动力学方程和Langmuir模型。扫描电镜表征结果表明,碱改性和铝改性均可改变沸石的孔隙结构,增加吸附点位。  相似文献   

6.
本研究利用低温-空气一步热解方法成功制得负载蒙脱石-生物炭。吸附效果、影响因素和再生潜力研究结果表明,负载蒙脱石能提升茶叶渣生物炭对典型阳离子染料—亚甲基蓝的吸附能力,提高温度和振荡速度有利于增加其吸附量。再生不会显著影响负载蒙脱石-茶叶渣生物炭对亚甲基蓝的吸附能力,多次再生后其平均吸附量保持在~24.0 mg·g-1。上述结果说明负载蒙脱石-生物炭可用于阳离子染料吸附且具有循环再利用潜力,吸附机制可能主要被阳离子交换(蒙脱石和生物炭自身)和静电吸附(生物炭自身)控制。  相似文献   

7.
以小麦秸秆粉末作为生物质原料,采用膨润土(Bent)、硫铝酸盐水泥(SAC)为改性剂,在限氧条件下制备改性生物炭,通过SEM、XRD、FTIR表征,对比探究对重金属Pb(Ⅱ)的吸附。结果表明:与未改性生物炭(BC)相比,膨润土改性生物炭(BBC)、SAC改性生物炭(SBC)及膨润土和SAC改性生物炭(SBBC)的产率、抗压强度提高,粒径减少;吸附量分别增加114.15、351.75、281.51 mg/g,其中SBC吸附量最高达458.08 mg/g,提高330.81%。SBC对Pb(Ⅱ)的吸附动力学符合拟二级动力学方程,吸附机理以化学吸附为主;吸附等温线以Langmuir模型为主,属单分子层吸附。文中制备了BBC、SBC、SBBC 3种改性生物炭,其中SBC性能最佳,具有对水中Pb(Ⅱ)优异的吸附性能及良好的机械性能。  相似文献   

8.
《应用化工》2022,(12):3350-3354
水体重金属污染对自然环境和人体健康造成了极大的危害,开发新型污染治理材料具有重大意义。本研究以玉米秸秆、牛粪粉末、小麦秆和麦穗为原料,以羟基磷灰石(HAP)和磷酸二氢钾(KH_2PO_4)为改性剂,采用浸渍-热解法制备生物炭,并探讨了生物炭对水中Pb(Ⅱ)的吸附效果。结果表明,磷基改性生物炭相比未改性生物炭对铅的吸附容量显著提高,KH_2PO_4改性玉米秸秆-牛粪生物炭对铅的吸附量较未改性增加了394.6 mg/g,提高了478.0%;HAP改性麦穗生物炭对铅的吸附量较未改性增加了507.9 mg/g,提高了997.7%;玉米生物炭原料中添加牛粪可显著提高改性生物炭对铅的吸附能力,相对于未添加,HAP和KH_2PO_4改性玉米秸秆-牛粪生物炭的铅吸附量分别增加了210.6,177.1 mg/g,提高了140.0%和59.1%。本研究制备的KH_2PO_4改性玉米秸秆-牛粪生物炭和HAP改性小麦生物炭对铅均表现出较强的吸附效果。  相似文献   

9.
制备了高锰酸钾改性的生物炭吸附材料,并研究其对于重金属离子Cu~(2+)的吸附效果。扫描电镜、X荧光光谱及X射线衍射分析结果表明,氧化锰颗粒存在生物炭的表面,从而增加了吸附效果。高锰酸钾改性生物炭对铜离子的最大吸附量为97.38mg/g,远大于普通生物炭的26.21mg/g。为了使生物炭从水中分离,制备了磁性生物炭材料,其对铜离子的最大吸附量可达到96.25mg/g,说明磁化过程对吸附材料的吸附效果影响较小。  相似文献   

10.
镧改性核桃壳生物炭制备及吸附水体磷酸盐性能   总被引:1,自引:0,他引:1       下载免费PDF全文
为研发低成本的磷酸盐吸附剂,以核桃壳为原料,LaCl3为改性试剂热解制备核桃壳生物炭。通过SEM-EDS、ICP-OES、FTIR和XRD对生物炭进行表征,采用吸附等温模型和动力学模型拟合生物炭的吸磷特征,并研究热解温度、La改性浓度、添加量、初始溶液pH和共存离子对生物炭吸附磷的影响。结果表明:La改性后,生物炭表面由于负载了La2O3和LaOCl,其吸附能力明显提高。热解温度为400℃、La浸渍浓度为0.1mol/L时获得的生物炭(BC-La400),其Langmuir最大磷吸附容量为12.18mg/g,吸附过程主要受化学吸附和颗粒内扩散控制。热解温度和La改性浓度过高均不利于磷的吸附。磷初始浓度为50mg/L时,BC-La400添加量为2.7g/L可获得较理想的吸附能力,但当添加量超过4.0g/L时,磷脱除率可超过98%。BC-La400吸磷时最佳初始pH为3,CO32-共存会明显削弱BC-La400对磷的吸附能力。  相似文献   

11.
《应用化工》2022,(4):859-862
为了阐明改性钢渣陶粒应用于水体除磷的可行性,通过吸附实验研究了镧铁复合氧化物改性钢渣陶粒对低浓度磷的吸附特性,考察了投加量、pH、共存离子等因素对除磷率的影响,并研究其吸附动力学特性。采用NaOH作为再生剂,比较了吸附饱和的改性钢渣陶粒经不同条件再生处理后的除磷效果。结果表明,对于初始磷浓度1 mg/L的溶液,吸附剂投加量5 g/L,pH为7时,除磷率高达99.07%;HCO_3-和SO_4-和SO_4(2-)对除磷的抑制作用较强。吸附动力学过程符合准二级动力学模型。使用1.5 mol/L NaOH浸泡60 min是较为合理的再生条件,一次再生后的除磷率仍可达98.51%。  相似文献   

12.
以农林废弃物水稻秸秆作为生物炭原料,在400、550℃的热解温度下制备生物炭,探究CaCl2、MgCl2改性生物炭(CBC-400、CBC-550、MBC-400、MBC-550)对磷的吸附性能。研究结果显示,MBC和CBC对磷的吸附特点不同:MBC对磷的吸附速率慢但吸附量大,而CBC的吸附速率快但吸附量小。等温吸附实验结果显示,MBC-400和MBC-550的饱和吸附量分别为67.08、60.17 mg/g,高于CBC-400和CBC-550(5.97、18.51 mg/g)。根据吸附动力学结果可知,CBC的吸附过程符合准一级吸附动力学,MBC对磷的吸附分为表面扩散和吸附两个阶段进行。在初始pH为3~11范围内,由于CaHPO4和Ca(H2PO4)2的表面沉淀作用受pH的影响,CBC吸磷量随pH的升高而略微上升,而MBC在静电吸附作用下吸磷量随着pH的升高而下降。采用XPS、SEM、BET、FTIR、XRD对生物炭的吸附作用进行分析,结果表明CBC吸附磷...  相似文献   

13.
梁文洁  郭盼梁  石晟昊  梁海 《山东化工》2022,(6):137-138,145
水体中磷的去除意义重大,吸附除磷因具有成本低,效果高,操作简单等优点而备受关注.生物炭作为一种具有多孔结构,对环境友好的吸附材料已被广泛应用,但是生物质直接制备的生物炭的磷吸附能力却十分有限.以原始生物炭为基础,将生物炭通过不同方法改性发现与原始生物炭相比,吸附能力显著提高.本文章分析近年来酸碱、金属、氧化剂改性生物炭...  相似文献   

14.
我国化工废水排放量巨大,其中含有的无机磷会导致淡水富营养化。选用来源广泛且环境友好的海藻酸钠为载体,微波一步热解活化法制得的高比表面积甘蔗渣生物炭为添加剂,氯化铁溶液为交联剂,通过溶胶凝胶法和包埋法制备了SA-Fe、SA-C-Fe和SA-C-Fe(C)三种吸附材料,并用其进行了无机磷的去除实验。研究发现三种材料的吸附过程均符合准二级动力学模型,其中SA-Fe和SA-C-Fe的吸附过程符合Langmuir等温模型,其对无机磷的最大吸附量分别为53.79 mg/g和78.75 mg/g;SA-C-Fe(C)对无机磷的吸附过程符合Langmuir-Freundlich等温吸附模型。SA-C-Fe材料吸附无机磷过程存在配体交换、静电吸引和表面沉积三种吸附机制,吸附容量最高;SA-C-Fe(C)微球经过碳化后,羟基官能团数量减少,配体交换作用减弱,且形成了铁氧化物沉积层,吸附容量最低。  相似文献   

15.
为了阐明改性钢渣陶粒应用于水体除磷的可行性,通过吸附实验研究了镧铁复合氧化物改性钢渣陶粒对低浓度磷的吸附特性,考察了投加量、pH、共存离子等因素对除磷率的影响,并研究其吸附动力学特性。采用NaOH作为再生剂,比较了吸附饱和的改性钢渣陶粒经不同条件再生处理后的除磷效果。结果表明,对于初始磷浓度1 mg/L的溶液,吸附剂投加量5 g/L,pH为7时,除磷率高达99.07%;HCO_3~-和SO_4~(2-)对除磷的抑制作用较强。吸附动力学过程符合准二级动力学模型。使用1.5 mol/L NaOH浸泡60 min是较为合理的再生条件,一次再生后的除磷率仍可达98.51%。  相似文献   

16.
以鸡粪和玉米芯的混合物为原料,制备热解生物炭前驱体(BPC),并用尿素对其水热改性,得到水热改性热解生物炭(HMPC),研究了HMPC对废水中Cr(Ⅵ)和甲基橙(MO)的吸附性能。结果表明,在温度为25℃,Cr(Ⅵ)、MO溶液初始pH分别为2.0、6.5,搅拌速率为150 r/min,HMPC投加量为1 g/L的条件下,对初始质量浓度为100 mg/L的Cr(Ⅵ)、MO的吸附量分别为56.26、73.31 mg/g。HMPC对Cr(Ⅵ)和MO的吸附较好地遵循准二级动力学模型。Langmuir模型更好地拟合HMPC对Cr(Ⅵ)和MO的吸附行为。  相似文献   

17.
以污水污泥、粉煤灰为原料,以质量分数为30%的氯化锌溶液为活化剂,在不同温度下煅烧制备污泥生物炭,用于处理含磷废水。通过单因素静态吸附实验探讨了污泥生物炭对磷的去除效果,并探究了其吸附机理。结果表明:300 ℃制备的污泥生物炭具有较好的除磷效果;扫描电镜(SEM)、比表面分析仪、傅里叶红外光谱仪(FT-IR)对原料和污泥生物炭表征结果显示,污泥生物炭煅烧前后的形貌及表面基团发生了显著改变,煅烧后样品的表面产生了较多微小空隙,比表面积增大,最高可达5.51 m2/g;在磷初始质量浓度为50 mg/L、吸附剂用量为16 g/L条件下,吸附在90 min达到平衡,磷的去除率高达93.73%;吸附过程符合准二级动力学方程及Freundlich等温吸附模型,最大饱和吸附量为9.615 mg/g;整个吸附过程ΔG0<0、ΔH0<0,是自发进行的放热过程;吸附过程除物理吸附外,同时涉及磷酸盐与吸附剂—OH或C—O共价键发生电子对配位作用,为物理-化学复合吸附;吸附剂第5次吸附为首次吸附量的85.74%,表现出较好的再生性能。  相似文献   

18.
改性生物炭作为磷吸附剂的应用与经济效益分析   总被引:1,自引:0,他引:1  
综述了原材料、炭化温度、改性剂、pH、共存离子以及生物炭再生等因素影响改性生物炭对磷(P)吸附性能的原因,并对不同改性生物炭的吸附性能及其吸附回收磷的经济效益进行了分析,以期为新型高效磷吸附材料研发提供指导与借鉴。  相似文献   

19.
以马铃薯秸秆为原料制备生物炭,对其进行超声改性得到改性生物炭。探究了改性生物炭对亚甲基蓝的吸附特性以及pH、投加量和离子含量对吸附效果的影响。结果表明,改性后的生物炭与原生物炭相比,吸附能力有所增强。准2级动力学模型(R~20.99)能更好的拟合动力学数据,颗粒内扩散方程拟合结果进一步表明,改性生物炭对亚甲基蓝的吸附受表面吸附和颗粒内扩散共同控制。Langmiur方程能较好的描述该吸附过程。热力学研究表明,改性生物炭吸附亚甲基蓝是自发、熵增的吸热过程。碱性环境有利于吸附反应的进行,在pH=2~11时,碱性越强,吸附效果越好。生物炭投加量为10 g/L时,对亚甲基蓝的去除率较为理想,离子含量的变化对吸附量无明显影响。  相似文献   

20.
针对水体中存在的抗生素污染现象,以小粒咖啡果壳为原料,采用限氧裂解法在500℃下制备了生物炭MCS-1,随后分别用KOH和H2SO4改性MCS-1,制得改性生物炭MCS-2和MCS-3,研究了3种生物炭对磺胺噻唑(ST)的吸附特性和吸附机理。实验结果表明:3种生物炭均具有多层级孔隙结构,与未改性生物炭MCS-1相比,MCS-2和MCS-3具有更发达的孔道结构和比表面积。3种生物炭对ST的吸附均符合准二级动力学模型和Freundlich模型,表明吸附过程主要为物理化学作用,且吸附速率主要受薄膜扩散控制。等温吸附和吸附热力学表明3种生物炭对ST的吸附是自发进行的多层吸附。在298 K时,MCS-1、MCS-2、MCS-3对ST的最大吸附量分别为0.77、1.12、0.47 mg/g;pH为2时,3种生物炭对ST的吸附量均达到最大,表明对ST的吸附适合在酸性环境下进行。碱改性后的咖啡果壳生物炭(MCS-2)对ST吸附效果较未改性的MCS-1和酸改性的MCS-3生物炭强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号