首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In isolated pea (Pisum sativum L.) mitochondria incorporation of 35S-methionine into newly synthesised proteins was influenced by the presence of site-specific inhibitors of the respiratory electron-transport chain. These effects were not produced by changes in the rate of respiratory electron transport itself nor by changes in ATP concentration. Protein synthesis was inhibited by inhibitors of ubiquinone reduction but not by inhibitors of ubiquinol oxidation. By the use of additional inhibitors at specific sites of the respiratory chain, different oxidation-reduction states were obtained for the different complexes in the electron-transport chain. It was found that electron transport through succinate:ubiquinone oxidoreductase (respiratory complex II) was specifically required for protein synthesis, even when all the other conditions for protein synthesis were satisfied. We suggest that a subunit of complex II, or a component closely associated with complex II, is involved in a regulatory system that couples electron transport to protein synthesis.  相似文献   

3.
Cytochrome bo is a four-subunit terminal ubiquinol oxidase in the aerobic respiratory chain of Escherichia coli that vectorially translocates protons not only via directed protolytic reactions but also via proton pumping. Previously, we postulated that a bound quinone in the high-affinity quinone binding site (QH) mediates electron transfer from the low-affinity quinol oxidation site (QL) in subunit II to low-spin heme b in subunit I as an electron gate and a transient electron reservoir [Sato-Watanabe, M., Mogi, T., Ogura, T., Kitagawa, T., Miyoshi, H., Iwamura, H., and Anraku, Y. (1994b) J. Biol. Chem. 269, 28908-28912]. In the present study, we carried out screening of ubiquinone analogues using a bound ubiquinone-free enzyme (DeltaUbiA1) that has been isolated from a ubiquinone biosynthesis mutant, and identified PC24 (2-chloro-4, 6-dinitrophenol), PC32 (2,6-dibromo-4-cyanophenol), and PC52 (2-isopropyl-5-methyl-4,6-dinitrophenol) as potent QH site inhibitors. PC15 (2,6-dichloro-4-nitrophenol) and PC16 (2, 6-dichloro-4-dicyanovinylphenol), potent QL site inhibitors, did not exhibit such a selective inhibition of the QH site. Binding studies using the air-oxidized DeltaUbiA enzyme showed that PC32 and PC52 have 4- to 7-fold higher affinity than ubiquinone-1. Reconstitution of the QH site with PC32 and PC52 resulted in a decrease of the apparent Vmax value to 1/7 and 1/3, respectively, of the control activity. These findings suggest that structural features of the QL and QH sites are different, and provide further support for the involvement of the QH site in intramolecular electron transfer and facile oxidation of quinols at the QL site.  相似文献   

4.
The 51-kDa flavoprotein subunit of mitochondrial NADH:ubiquinone oxidoreductase (Complex I) [NADH dehydrogenase (ubiquinone), flavoprotein 1 (51 kDa); EC 1.6.5.3] plays an important role in the formation of the NADH-binding site and is believed to be the principal site of entry for electrons donated by NADH into the respiratory chain. Human cDNA fragments of the 51-kDa protein were generated by polymerase chain reaction and used to localize the gene (NDUFV1) for this subunit to 11q13 by two separate techniques. This region of the human genome is strongly implicated in a number of different forms of cancer.  相似文献   

5.
A method is described for the simultaneous detection of ubiquinol-10 and ubiquinone-10 in human plasma. In this procedure, heparinized human plasma was mixed with 5 vol of methanol and 10 vol of hexane. After vigorous shaking and centrifugation, an aliquot of the hexane phase (5 microl) was injected immediately and directly onto a reversed-phase HPLC to minimize the oxidation of ubiquinol to ubiquinone. A post-separation, on-line reduction column converts ubiquinone to ubiquinol which is quantified by electrochemical detection. The detection limit of plasma ubiquinol-10 and ubiquinone-10 is about 4 nM with excellent reproducibilities. Tocopherols, lycopene, and beta-carotene are also detectable in this method. In addition, free cholesterol, and cholesteryl esters can be quantified by their absorption at 210 nm. Using this method we have determined the ratio of ubiquinol to ubiquinone is about 95/5 in human plasma from healthy donors. We suggest that this method will be useful since the ratio of ubiquinol to ubiquinone has been suggested as a good marker of oxidative stress.  相似文献   

6.
Electron transfer by domain movement in cytochrome bc1   总被引:1,自引:0,他引:1  
The cytochrome bc1 is one of the three major respiratory enzyme complexes residing in the inner mitochondrial membrane. Cytochrome bc1 transfers electrons from ubiquinol to cytochrome c and uses the energy thus released to form an electrochemical gradient across the inner membrane. Our X-ray crystal structures of the complex from chicken, cow and rabbit in both the presence and absence of inhibitors of quinone oxidation, reveal two different locations for the extrinsic domain of one component of the enzyme, an iron-sulphur protein. One location is close enough to the supposed quinol oxidation site to allow reduction of the Fe-S protein by ubiquinol. The other site is close enough to cytochrome c1 to allow oxidation of the Fe-S protein by the cytochrome. As neither location will allow both reactions to proceed at a suitable rate, the reaction mechanism must involve movement of the extrinsic domain of the Fe-S component in order to shuttle electrons from ubiquinol to cytochrome c1. Such a mechanism has not previously been observed in redox protein complexes.  相似文献   

7.
A randomized, double-masked, placebo-controlled cross-over trial was carried out to evaluate whether ubiquinone supplementation (180 mg daily) corrects impaired defence against initiation of oxidation of low density lipoprotein (LDL) related to effective (60 mg daily) lovastatin treatment. Nineteen men with coronary heart disease and hypercholesterolemia received lovastatin with or without ubiquinone during 6-week periods after wash-out. The depletion times for LDL ubiquinol and reduced alpha-tocopherol were determined during oxidation induced by 2,2-azobis(2,4-dimethylvaleronitrile) (AMVN). Copper-mediated oxidation of LDL isolated by rapid density-gradient ultracentrifugation was used to measure the lag time to the propagation phase of conjugated diene formation. Compared to mere lovastatin therapy, ubiquinone supplementation lead to a 4.4-fold concentration of LDL ubiquinol (P < 0.0001). In spite of the 49% lengthening in depletion time (P < 0.0001) of LDL ubiquinol, the lag time in copper-mediated oxidation increased only by 5% (P = 0.02). Ubiquinone loading had no statistically significant effect on LDL alpha-tocopherol redox kinetics during high radical flux ex vivo. The faster depletion of LDL ubiquinol and shortened lag time in conjugated diene formation during high-dose lovastatin therapy may, at least partially, be restored with ubiquinone supplementation. However, the observed improvement in LDL antioxidative capacity was scarce, and the clinical relevance of ubiquinone supplementation during statin therapy remains open.  相似文献   

8.
The cytochrome bo3 ubiquinol oxidase contains at least one and possibly two binding sites for ubiquinol/ubiquinone. Previous studies used the photoreactive affinity label 3-[3H]azido-2-methyl-5-methoxy-6-geranyl-1,4-benzoquinone (azido-Q), a substrate analogue, to demonstrate that subunit II contributes to at least one of the quinol binding sites. In the current work, mass spectroscopy is used to identify a peptide within subunit II that is photolabeled by the azido-Q. Purified cytochrome bo3 was photolabeled as previously described using azido-Q that was not tritiated (i.e., not radiolabeled). Subunit II was then isolated from an SDS-PAGE gel and proteolyzed in situ with trypsin. The resulting peptides were eluted from the gel and then identified using matrix-assisted laser desorption ionization mass spectrometry. The resulting mass spectrum was compared to that obtained by analysis of subunit II that had not been exposed to the photolabel. Using the amino acid sequence, each peak in the mass spectrum of the unlabeled subunit II could be assigned to an expected trypsin fragment. Two additional peaks were observed in the mass spectrum of the photolabeled subunit with m/z 1931.9 and 2287.7. Subtraction of the mass of azido-Q from the peak at m/z 1931.9 results in a mass equivalent to that of a peptide consisting of amino acids 165-178. The assignment of the peak at m/z 2287.7 cannot be made unequivocally and may correspond either to the covalent attachment of azido-Q to peptide 254-270 or to a peptide resulting from incomplete proteolysis. The labeled peptide, 165-178, is within the water-soluble domain of subunit II, whose X-ray structure is known. This peptide is located near the site where CuA is located in the homologous cytochrome c oxidases and can be placed near the interface between subunits I and II.  相似文献   

9.
Intracolonic bacteria have previously been shown to produce substantial amounts of acetaldehyde during ethanol oxidation, and it has been suggested that this acetaldehyde might be associated with alcohol-related colonic disorders, as well as other alcohol-induced organ injuries. The capacity of colonic mucosa to remove this bacterial acetaldehyde by aldehyde dehydrogenase (ALDH) is, however, poorly known. We therefore measured ALDH activities and determined ALDH isoenzyme profiles from different subcellular fractions of rat colonic mucosa. For comparison, hepatic, gastric, and small intestinal samples were studied similarly. Alcohol dehydrogenase (ADH) activities were also measured from all of these tissues. Rat colonic mucosa was found to possess detectable amounts of ALDH activity with both micromolar and millimolar acetaldehyde concentrations and in all subcellular fractions. The ALDH activities of colonic mucosa were, however, generally low when compared with the liver and stomach, and they also tended to be lower than in small intestine. Mitochondrial low K(m) ALDH2 and cytosolic ALDH with low K(m) for acetaldehyde were expressed in the colonic mucosa, whereas some cytosolic high K(m) isoenzymes found in the small intestine and stomach were not detectable in colonic samples. Cytosolic ADH activity corresponded well to ALDH activity in different tissues: in colonic mucosa, it was approximately 6 times lower than in the liver and about one-half of gastric ADH activity. ALDH activity of the colonic mucosa should, thus, be sufficient for the removal of acetaldehyde produced by colonic mucosal ADH during ethanol oxidation. It may, however, be insufficient for the removal of the acetaldehyde produced by intracolonic bacteria. This may lead to the accumulation of acetaldehyde in the colon and colonic mucosa after ingestion of ethanol that might, at least after chronic heavy alcohol consumption, contribute to the development of alcohol-related colonic morbidity, diarrhea, and cancer.  相似文献   

10.
Mitochondria of fungi contain two respiratory chain enzymes concerned with the oxidation of matrix NADH. These are the proton-pumping NADH:ubiquinone oxidoreductase, also called complex I, which has a high affinity for NADH, and a non-proton-pumping NADH:ubiquinone oxidoreductase, called alternative NADH dehydrogenase, which has a low affinity for NADH. The role of these two enzymes in normal and overflow catabolism has been studied in Aspergillus niger. Three strains were investigated, the wild-type 732, the mutant nuo51 that was generated from the wild-type by disrupting the gene of the (51-kDa) NADH-binding subunit of complex I and the citric acid over-producing strain B60 that looses complex I concomitantly with the onset of the over-production. Under standard growth conditions, respiratory energy transduction in the mutant nuo51 was decreased by 40% compared to the parental wild-type and the strain B60. Respiratory electron transfer in the mutant nuo51, however, meets standard catabolic requirements. The intracellular levels of citric acid cycle intermediates in the mutant nuo51 were the same as in the other two strains. Under growth conditions which lead to uncontrolled catabolic flux through glycolysis, a dramatic catabolic overflow occurred in the mutant nuo51. Intracellular levels of citric acid cycle intermediates increased to 20-fold normal levels. The strain B60, likewise lacking complex I under these conditions, excretes large amounts of citrate to moderate the intracellular catabolic overflow.  相似文献   

11.
To investigate the energy-conserving function of the NADH:ubiquinone reductase (complex I), we have selected oxonol VI [bis(3-propyl-5-oxoisoxazol-4-yl)pentamethine oxonol] as the most sensitive probe for measuring the reactions of membrane potential generation in submitochondrial particles. Calibration of the oxonol signals with potassium diffusion potentials shows a non-linear response after a threshold around -50 mV. Thermodynamic evaluations indicate that the upper limit of the oxonol response to the potential generated by complex I is around -220 mV, which is close to the maximal protonmotive force in coupled submitochondrial particles. NADH addition to particles in which ubiquinol oxidation is blocked by inhibitors of other respiratory complexes generates oxonol signals corresponding to membrane potentials of -130 to -180 mV. These signals are produced by about four turnovers of the complex reducing endogenous ubiquinone (i.e. non-steady-state conditions) and are equivalent to a charge separation similar to that of the antimycin-sensitive reactions of ubiquinol:cytochrome c reductase (complex III). The transient oxonol signals under non-steady-state conditions are thus informative of crucial steps in the electrogenic reactions catalyzed by complex I. The possible nature of these electrogenic reactions is discussed in relation to proposed mechanisms for complex I.  相似文献   

12.
We have previously shown that intact plants and cultured plant cells can metabolize and detoxify formaldehyde through the action of a glutathione-dependent formaldehyde dehydrogenase (FDH), followed by C-1 metabolism of the initial metabolite (formic acid). The cloning and heterologous expression of a cDNA for the glutathione-dependent formaldehyde dehydrogenase from Zea mays L. is now described. The functional expression of the maize cDNA in Escherichia coli proved that the cloned enzyme catalyses the NAD(+)- and glutathione (GSH)-dependent oxidation of formaldehyde. The deduced amino acid sequence of 41 kDa was on average 65% identical with class III alcohol dehydrogenase from animals and less than 60% identical with conventional plant alcohol dehydrogenases (ADH) utilizing ethanol. Genomic analysis suggested the existence of a single gene for this cDNA. Phylogenetic analysis supports the convergent evolution of ethanol-consuming ADHs in animals and plants from formaldehyde-detoxifying ancestors. The high structural conservation of present-day glutathione-dependent FDH in microorganisms, plants and animals is consistent with a universal importance of these detoxifying enzymes.  相似文献   

13.
The reduction kinetics of coenzyme Q (CoQ, ubiquinone) by NADH:ubiquinone oxidoreductase (complex I, EC 1.6.99.3) was investigated in bovine heart mitochondrial membranes using water-soluble homologs and analogs of the endogenous ubiquinone acceptor CoQ10 [the lower homologs from CoQ0 to CoQ3, the 6-pentyl (PB) and 6-decyl (DB) analogs, and duroquinone]. By far the best substrates in bovine heart submitochondrial particles are CoQ1 and PB. The kinetics of NADH-CoQ reductase was investigated in detail using CoQ1 and PB as acceptors. The kinetic pattern follows a ping-pong mechanism; the Km for CoQ1 is in the range of 20 microM but is reversibly increased to 60 microM by extraction of the endogenous CoQ10. The increased Km in CoQ10-depleted membranes indicates that endogenous ubiquinone not only does not exert significant product inhibition but rather is required for the appropriate structure of the acceptor site. The much lower Vmax with CoQ2 but not with DB as acceptor, associated with an almost identical Km, suggests that the sites for endogenous ubiquinone bind 6-isoprenyl- and 6-alkylubiquinones with similar affinity, but the mode of electron transfer is less efficient with CoQ2. The Kmin (kcat/Km) for CoQ1 is 4 orders of magnitude lower than the bimolecular collisional constant calculated from fluorescence quenching of membrane probes; moreover, the activation energy calculated from Arrhenius plots of kmin is much higher than that of the collisional quenching constants. These observations strongly suggest that the interaction of the exogenous quinones with the enzyme is not diffusion-controlled. Contrary to other systems, in bovine submitochondrial particles, CoQ1 usually appears to be able to support a rate approaching that of endogenous CoQ10, as shown by application of the "pool equation" [Kr?ger, A., & Klingenberg, M. (1973) Eur. J. Biochem. 39, 313-323] relating the rate of ubiquinone reduction to the rate of ubiquinol oxidation and the overall rate through the ubiquinone pool.  相似文献   

14.
Vitamin A (retinol) regulates embryonic development and adult epithelial function via metabolism to retinoic acid, a pleiotrophic regulator of gene expression. Retinoic acid is synthesized locally and functions in an autocrine or paracrine fashion, but the enzymes involved remain obscure. Alcohol dehydrogenase (ADH) isozymes capable of metabolizing retinol include class I and class IV ADHs, with class III ADH unable to perform this function. ADHs also metabolize ethanol, and high levels of ethanol inhibit retinol metabolism, suggesting a possible mode of action for some of the medical complications of alcoholism. To explore whether any ADH isozymes are linked to retinoic acid synthesis, herein we have examined the expression patterns of all known classes of ADH in mouse embryonic and adult tissues, and also measured retinoic acid levels. Using in situ hybridization, class I ADH mRNA was localized in the embryo to the epithelia of the genitourinary tract, intestinal tract, adrenal gland, liver, conjunctival sac, epidermis, nasal epithelium, and lung, plus in the adult to epithelia within the testis, epididymis, uterus, kidney, intestine, adrenal cortex, and liver. Class IV ADH mRNA was localized in the embryo to the adrenal gland and nasal epithelium, plus in the adult to the epithelia of the esophagus, stomach, testis, epididymis, epidermis, and adrenal cortex. Class III ADH mRNA, in contrast, was present at low levels and not highly localized in the embryonic and adult tissues examined. We detected significant retinoic acid levels in the fetal kidney, fetal/adult intestine and adrenal gland, as well as the adult liver, lung, testis, epididymis, and uterus--all sites of class I and/or class IV ADH gene expression. These findings indicate that the expression patterns of class I ADH and class IV ADH, but not class III ADH, are consistent with a function in local retinoic acid synthesis needed for the development and maintenance of many specialized epithelial tissues.  相似文献   

15.
Cytochrome bo is a member of the heme-copper terminal oxidase superfamily and serves as a four-subunit ubiquinol oxidase in the aerobic respiratory chain of Escherichia coli. To probe the location and structural properties of the ubiquinol oxidation site, we isolated and characterized five or 10 spontaneous mutants resistant to either 2,6-dimethyl-1,4-benzoquinone, 2,6-dichloro-4-nitrophenol, or 2,6-dichloro-4-dicyanovinylphenol, the potent competitive inhibitors for the oxidation of ubiquinol-1 [Sato-Watanabe, M., Mogi, T., Miyoshi, H., Iwamura, H., Matsushita, K., Adachi, O., and Anraku, Y. (1994) J. Biol. Chem. 269, 28899-28907]. Analyses of the growth yields and the ubiquinol-1 oxidase activities of the mutant membranes showed that the mutations increased the degree of the resistance to the selecting compounds. Notably, several mutants showed the cross-resistance. These data indicate that the binding sites for substrate and the competitive inhibitors are partially overlapped in the ubiquinol oxidation site. All the mutations were linked to the expression vector, and 23 mutations examined were all present in the C-terminal hydrophilic domain (Pro96-His315) of subunit II. Sequencing analysis revealed that seven mutations examined are localized near both ends of the cupredoxin fold. Met248Ile, Ser258Asn, Phe281Ser, and His284Pro are present in a quinol oxidase-specific (Qox) domain and proximal to low-spin heme b in subunit I and the lost CuA site in subunit II, whereas Ile129Thr, Asn198Thr, and Gln233His are rather scattered in a three-dimensional structure and closer to transmembrane helices of subunit II. Our data suggest that the Qox domain and the CuA end of the cupredoxin fold provide the quinol oxidation site and are involved in electron transfer to the metal centers in subunit I.  相似文献   

16.
Amphibacillus xylanus Ep01, a facultative anaerobe we recently isolated, shows rapid aerobic growth even though it lacks a respiratory pathway. Thus, the oxidative consumption of NADH, produced during glycolysis and pyruvate oxidation, should be especially important for maintenance of intracellular redox balance in this bacterium. We purified a flavoprotein functional as NADH oxidase from aerobically growing A. xylanus Ep01. The A. xylanus enzyme is a homotetramer composed of a subunit (M(r) 56,000) containing 1 mol of flavin adenine dinucleotide. This enzyme catalyzes the reduction of oxygen to hydrogen peroxide with beta-NADH as the preferred electron donor and exhibits no activity with NADPH. The flavoprotein gene of A. xylanus Ep01 was cloned by using a specific antibody. The amino acid sequence of 509 residues, deduced from the nucleotide sequence, showed 51.2 and 72.5% identities to the amino acid sequences of alkyl hydroperoxide reductase from Salmonella typhimurium and NADH dehydrogenase from alkalophilic Bacillus sp. strain YN-1, respectively. Bacillus spp. have a respiratory chain and grow well under aerobic conditions. In contrast, Amphibacillus spp., having no respiratory chain, grow equally well under both aerobic and anaerobic conditions, which distinguishes these two genera. Salmonella spp., which are gram-negative bacteria, are taxonomically distant from gram-positive bacteria such as Bacillus spp. and Amphibacillus spp. The above findings, however, suggest that the flavoprotein functional as NADH oxidase, the alkyl hydroperoxide reductase, and the NADH dehydrogenase diverged recently, with only small changes leading to their functional differences.  相似文献   

17.
Our previous studies in iron-loaded rat heart cells showed that in vitro iron loading results in peroxidative injury, manifested in a marked decrease in rate and amplitude of heart cell contractility and rhythmicity, which is correctable by treatment with deferoxamine (DF). In the present studies we explored the role of mitochondrial damage in myocardial iron toxicity. Iron loading by 24-hour incubation with 0.36 mmol/L ferric ammonium citrate resulted in a decrease in the activity of nicotinamide adenine dinucleotide (NADH)-cytochrome c oxidoreductase (complex I+III) to 35.3%+/-11.2% of the value in untreated controls; of succinate-cytochrome c oxidoreductase (complex II+III) to 57.4%+/-3.1%; and of succinate dehydrogenase to 63.5%+/-12.6% (p < 0.001 in all cases). The decrease in activity of other mitochondrial enzymes, including NADH-ferricyanide reductase, succinate ubiquinone oxidoreductase (complex II), cytochrome c oxidase (complex IV), and ubiquinol cytochrome c oxidoreductase (complex III), was less impressive and ranged from 71.5%+/-15.8% to 91.5%+/-14.6% of controls. That the observed loss of respiratory enzyme activity was a specific effect of iron toxicity was clearly demonstrated by the complete restoration of enzyme activities by in vitro iron chelation therapy. Sequential treatment with iron and doxorubicin caused a loss of complex I+III and complex II+III activity that was greater than that seen with either agent alone but was only partially correctable by DF treatment. Alterations in cellular adenosine triphosphate measurements paralleled very closely the changes observed in respiratory complex activity. These findings demonstrate for the first time the impairment of cardiac mitochondrial respiratory enzyme activity caused by iron loading at conditions formerly shown to produce severe abnormalities in contractility and rhythmicity.  相似文献   

18.
The gene encoding the beta subunit of a molecular chaperonin from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1 (cpkB) was cloned, sequenced, and expressed in Escherichia coli. The cpkB gene is composed of 1,641 nucleotides, encoding a protein (546 amino acids) with a molecular mass of 59,140 Da. The enhancing effect of CpkB on enzyme stability was examined by using Saccharomyces cerevisiae alcohol dehydrogenase (ADH). Purified recombinant CpkB prevents thermal denaturation and enhances thermostability of ADH. CpkB requires ATP for its chaperonin function at a low CpkB concentration; however, CpkB functions without ATP when present in excess. In vivo chaperonin function for the solubilization of insoluble proteins was also studied by coexpressing CpkB and CobQ (cobryic acid synthase), indicating that CpkB is useful for solubilizing the insoluble proteins in vivo. These results suggest that the beta subunit plays a major role in chaperonin activity and is functional without the alpha subunit.  相似文献   

19.
Two genes coding for isozymes of alcohol dehydrogenase (ADH); designated PsADH1 and PsADH2, have been identified and isolated from Pichia stipitis CBS 6054 genomic DNA by Southern hybridization to Saccharomyces cerevisiae ADH genes, and their physiological roles have been characterized through disruption. The amino acid sequences of the PsADH1 and PsADH2 isozymes are 80.5% identical to one another and are 71.9 and 74.7% identical to the S. cerevisiae ADH1 protein. They also show a high level identity with the group I ADH proteins from Kluyveromyces lactis. The PsADH isozymes are presumably localized in the cytoplasm, as they do not possess the amino-terminal extension of mitochondrion-targeted ADHs. Gene disruption studies suggest that PsADH1 plays a major role in xylose fermentation because PsADH1 disruption results in a lower growth rate and profoundly greater accumulation of xylitol. Disruption of PsADH2 does not significantly affect ethanol production or aerobic growth on ethanol as long as PsADH1 is present. The PsADH1 and PsADH2 isozymes appear to be equivalent in the ability to convert ethanol to acetaldehyde, and either is sufficient to allow cell growth on ethanol. However, disruption of both genes blocks growth on ethanol. P. stipitis strains disrupted in either PsADH1 or PsADH2 still accumulate ethanol, although in different amounts, when grown on xylose under oxygen-limited conditions. The PsADH double disruptant, which is unable to grow on ethanol, still produces ethanol from xylose at about 13% of the rate seen in the parental strain. Thus, deletion of both PsADH1 and PsADH2 blocks ethanol respiration but not production, implying a separate path for fermentation.  相似文献   

20.
Based on the results obtained from GTP overlay assay, immunoprecipitation, two dimensional electrophoresis and radiolabeled GTP binding, we provide evidence that the bona fide subunit of Complex I, the long known 24 kDa protein is a G protein. Bacterially expressed 24 kDa protein with additional N-terminal methionine and alanine residues or naturally expressed truncated isoform fail to bind GTP suggesting that secondary modification/ processed N-terminal end is necessary for GTP binding. Competitive inhibition of binding of radiolabeled GTP to electroblotted 24 kDa protein with unlabelled nucleotides showed that the protein binds GTP and GDP with high affinity in presence of Mg2+, and has decreased to very low affinity for ITP, CTP, GMP and UTP. A comparative binding of [gamma-35S]-GTP to Complex I and 24 kDa protein (electroblotted) suggests that the GTP binding in the native Complex is solely due to 24 kDa protein. Further, four fold difference in the binding affinities between native Complex I and 24 kDa protein (electroblotted) as seen by Scatchard analysis of the binding data indicates that protein undergoes structural rearrangement in Complex I bound form, that presumably triggers divalent cation dependent GTPase activity in native complex. We were unable to detect the effect of GTP/ GDP on the ubiquinone/ferricyanide reductase activity. Since the subunit is found missing in tissues affected by mitochondrial respiratory chain diseases, we presume that the subunit has regulatory role in the Complex I function in the electron transport chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号